999 resultados para Dihedral Group
Resumo:
The title compound, C18H16N2O, crystallizes in the triclinic space group P1, with four independent molecules in the asymmetric unit wherein two molecules have an irregular -ac, -ac, +ap conformation (ap, antiperiplanar; ac, anticlinal), while the other molecules exhibit a different, +ac, +ac, +ap conformation. The planar (r.m.s. deviation = 0.006 A in each of the four molecules) quinoline ring systems of the four molecules are oriented at dihedral angles of 32.8 (2), 33.4 (2), 31.7 (2) and 32.3 (2)degrees with respect to the benzene rings. Intramolecular N-H...N interactions occur in all four independent molecules. The crystal packing is stabilized by intermolecular N-H...O and C-H...O hydrogen bonds, and are further consolidated by C-H...pi and pi-pi stacking interactions centroid-centroid distances = 3.728 (3), 3.722 (3), 3.758 (3) and 3.705 (3) A].
Resumo:
The concept of carbocycle-heterocycle equivalency has been utilised to assemble the framework of fawcettimine-serratinine group of alkaloids from 1,5-cyclooctadiene through a common tricarbocyclic intermediate 3.
Resumo:
A multiplier theorem for the sublaplacian on the Heisenberg group is proved using Littlewood-Paley-Stein theory of g-functions.
Resumo:
The low-lying singlets and triplets of biphenyl are obtained exactly within the PPP model using the diagrammatic valence bond method. The energy gaps within the singlet manifold as well as the lowest singlet-triplet gap are found to be in good agreement with experimental results. The two weak absorptions between 4·1 and 4·2 eV reported experimentally are attributed to the two states lying below the optical gap that become weakly allowed on breaking electron-hole and inversion symmetries. The observed blue shift of the spectral lines, attributed to a change in dihedral angle, on going from crystalline to solution to vapour phase is also well reproduced within the PPP model. The bond orders show that the ground singlet state is benzenoidal while the dipole excited state as well as the lowest triplet state are quinonoidal and planar. Comparison with the experimental spin densities and the fine structure constants D and E in the triplet state point to slightly weaker correlations than assumed by the PPP model. The introduction of a 1-8 bond to mimic poly(paraphenylene)s gives an optical gap that is in good agreement with experiment.
Resumo:
The reactions of the complexes [MI2(CO)3-(NCMe)2] (M = Mo, W) with the diphosphazane ligands RN{P(OPh)2}2 (R = Me, Ph) in CH2Cl2 at room temperature afford new seven-coordinated complexes of the type [MI2(CO)3{P(OPh)2}2NR]. The molybdenum complexes are sensitive to air oxidation even in the solid state, whereas the tungsten complexes are more stable in the solid state and in solution. The structure of the tungsten complex [WI2(CO)3{P(OPh)2}2NPh] has been determined by single-crystal X-ray diffraction. It crystallizes in the orthorhombic system with the space group Pna 2(1), a = 19.372 (2) angstrom, b = 11.511 (1) angstrom, c = 15.581 (1) angstrom, and Z = 4. Full-matrix least-squares refinement with 3548 reflections (I > 2.5-sigma-(I)) led to final R and R(w) values of 0.036 and 0.034, respectively. The complex adopts a slightly distorted pentagonal-bypyramidal geometry rarely observed for such a type of complexes; two phosphorus atoms of the diphosphazane ligand, two iodine atoms, and a carbonyl group occupy the equatorial plane, and the other two carbonyl groups, the apical positions.
Resumo:
XVIII IUFRO World Congress, Ljubljana 1986.
Resumo:
This study addresses the challenge of analyzing interruption in spoken interaction. It begins with my observation of eight hours of academic group work among speakers of English as a lingua franca (ELF) in a university course. Unlike the common findings of ELF research which underscore the cooperative orientation of ELF users, this particular group gave strong impressions of interruption and uncooperativeness as they prepared a scientific group presentation. In the effort to investigate these impressions, I found that no satisfactory method exists for systematically identifying and analyzing interruptions. A useful tool was found in Linear Unit Grammar or LUG (Sinclair & Mauranen 2006), which analyzes spoken interaction prospectively as linear text. In the course of transcribing one of the early group work meetings, I developed a model of LUG-based criteria for identifying individual instances of interruption. With this system in place, I was then able to evaluate the aggregate occurrences of interruption in the group work and identify co-occurring interactive features which further influenced the perception of uncooperativeness. Finally, these aggregate statistics directed a return to the data and a contextually sensitive, qualitative analysis. This research cycle illuminates the interactive features which contributed to my own impressions of uncooperativeness, as well as the group members orientations to their own interruptive practice.
Resumo:
In this paper we prove two Paley-Wiener-type theorems for the Heisenberg group. One is for the group Fourier transform which is the analogue of the classical Paley-Wiener theorem. The other one is for the spectral projections associated to the sub-Laplacian
Synthesis, characterization, and thermal degradation studies on group VIA derived weak-link polymers
Resumo:
Polymers containing group VIA derived weak links, viz. poly(styrene disulfide) (PSD), poly- (styrene tetrasulfide) (PST), and poly(styrene diselenide) (PSDSE), have been synthesized. The polymers PSD and PST were characterized by NMR, IR, UV, TGA, and fast atom bombardment m w spectrometric (FABMS) techniques. The presence of different configurational sequences in PSD and PST were identified by *3C NMR spectroscopy. PSDSE, being insoluble in common organic solvents, was characterized using solid-state lac NMR (CP-MAS) spectroscopy. Thermal degradation of polymers under direct pyrolysis-mass spectrometric (DP-MS) conditions revealed that all the polymers undergo degradation through the weaklink scission. A comparative study of the pyrolysis products of these polymers with that of poly(styrene peroxide) (PSP) revealed a smooth transformation down the group with no monomer (styrene or oxygen) formation in PSP to only styrene and selenium metal in PSDSE. This trend of group VIA is explained from the energetics of the C-X bond (X = 0, S, and Se) which also seems to be important in addition to the weak X-X bond cleavage. In PSP and PSD, the behavior is also explained from the energetics of the alkoxy and thiyl radicals. The unique exothermic degradation in PSP compared to endothermic degradation in PSD and PSDSE is explained from the nature of the producta of degradation.