954 resultados para Differential Localization
Resumo:
We give sufficient conditions for homotopical localization functors to preserve algebras over coloured operads in monoidal model categories. Our approach encompasses a number of previous results about preservation of structures under localizations, such as loop spaces or infinite loop spaces, and provides new results of the same kind. For instance, under suitable assumptions, homotopical localizations preserve ring spectra (in the strict sense, not only up to homotopy), modules over ring spectra, and algebras over commutative ring spectra, as well as ring maps, module maps, and algebra maps. It is principally the treatment of module spectra and their maps that led us to the use of coloured operads (also called enriched multicategories) in this context.
Resumo:
This paper suggests a simple method based on Chebyshev approximation at Chebyshev nodes to approximate partial differential equations. The methodology simply consists in determining the value function by using a set of nodes and basis functions. We provide two examples. Pricing an European option and determining the best policy for chatting down a machinery. The suggested method is flexible, easy to program and efficient. It is also applicable in other fields, providing efficient solutions to complex systems of partial differential equations.
Resumo:
AIMS: Estimates of the left ventricular ejection fraction (LVEF) in patients with life-threatening ventricular arrhythmias related to coronary artery disease (CAD) have rarely been reported despite it has become the basis for determining patient's eligibility for prophylactic defibrillator. We aimed to determine the extent and distribution of reduced LVEF in patients with sustained ventricular tachycardia or ventricular fibrillation. METHODS AND RESULTS: 252 patients admitted for ventricular arrhythmia related to CAD were included: 149 had acute myocardial infarction (MI) (Group I, 59%), 54 had significant chronic obstructive CAD suggestive of an ischaemic arrhythmic trigger (Group II, 21%) and 49 patients had an old MI without residual ischaemia (Group III, 19%). 34% of the patients with scar-related arrhythmias had an LVEF > or =40%. Based on pre-event LVEF evaluation, it can be estimated that less than one quarter of the whole study population had a known chronic MI with severely reduced LVEF. In Group III, the proportion of inferior MI was significantly higher than anterior MI (81 vs. 19%; absolute difference, -62; 95% confidence interval, -45 to -79; P < or = 0.0001), though median LVEF was higher in inferior MI (0.37 +/- 10 vs. 0.29 +/- 10; P = 0.0499). CONCLUSION: Patients included in defibrillator trials represent only a minority of the patients at risk of sudden cardiac death. By applying the current risk stratification strategy based on LVEF, more than one third of the patients with old MI would not have qualified for a prophylactic defibrillator. Our study also suggests that inferior scars may be more prone to ventricular arrhythmia compared to anterior scars.
Resumo:
The antigen-presenting cell-expressed CD40 is implied in the regulation of counteractive immune responses such as induction of pro-inflammatory and anti-inflammatory cytokines interleukin (IL)-12 and IL-10, respectively. The mechanism of this duality in CD40 function remains unknown. Here, we investigated whether such duality depends on ligand binding. Based on CD40 binding, we identifed two dodecameric peptides, peptide-7 and peptide-19, from the phage peptide library. Peptide-7 induces IL-10 and increases Leishmania donovani infection in macrophages, whereas peptide-19 induces IL-12 and reduces L. donovani infection. CD40-peptide interaction analyses by surface plasmon resonance and atomic force microscopy suggest that the functional differences are not associated with the studied interaction parameters. The molecular dynamic simulation of the CD40-peptides interaction suggests that these two peptides bind to two different places on CD40. Thus, we suggest for the first time that differential binding of the ligands imparts functional duality to CD40.
Resumo:
There are controversial reports about the effect of aging on movement preparation, and it is unclear to which extent cognitive and/or motor related cerebral processes may be affected. This study examines the age effects on electro-cortical oscillatory patterns during various motor programming tasks, in order to assess potential differences according to the mode of action selection. Twenty elderly (EP, 60-84 years) and 20 young (YP, 20-29 years) participants with normal cognition underwent 3 pre-cued response tasks (S1-S2 paradigm). S1 carried either complete information on response side (Full; stimulus-driven motor preparation), no information (None; general motor alertness), or required free response side selection (Free; internally-driven motor preparation). Electroencephalogram (EEG) was recorded using 64 surface electrodes. Alpha (8-12 Hz) desynchronization (ERD)/synchronization (ERS) and motor-related amplitude asymmetries (MRAA) were analyzed during the S1-S2 interval. Reaction times (RTs) to S2 were slower in EP than YP, and in None than in the other 2 tasks. There was an Age x Task interaction due to increased RTs in Free compared to Full in EP only. Central bilateral and midline activation (alpha ERD) was smaller in EP than YP in None. In Full just before S2, readiness to move was reflected by posterior midline inhibition (alpha ERS) in both groups. In Free, such inhibition was present only in YP. Moreover, MRAA showed motor activity lateralization in both groups in Full, but only in YP in Free. The results indicate reduced recruitment of motor regions for motor alertness in the elderly. They further show less efficient cerebral processes subtending free selection of movement in elders, suggesting reduced capacity for internally-driven action with age.
Resumo:
The ability of the developing myocardium to tolerate oxidative stress during early gestation is an important issue with regard to possible detrimental consequences for the fetus. In the embryonic heart, antioxidant defences are low, whereas glycolytic flux is high. The pro- and antioxidant mechanisms and their dependency on glucose metabolism remain to be explored. Isolated hearts of 4-day-old chick embryos were exposed to normoxia (30 min), anoxia (30 min), and hyperoxic reoxygenation (60 min). The time course of ROS production in the whole heart and in the atria, ventricle, and outflow tract was established using lucigenin-enhanced chemiluminescence. Cardiac rhythm, conduction, and arrhythmias were determined. The activity of superoxide dismutase, catalase, gutathione reductase, and glutathione peroxidase as well as the content of reduced and oxidized glutathione were measured. The relative contribution of the ROS-generating systems was assessed by inhibition of mitochondrial complexes I and III (rotenone and myxothiazol), NADPH oxidases (diphenylene iodonium and apocynine), and nitric oxide synthases (N-monomethyl-l-arginine and N-iminoethyl-l-ornithine). The effects of glycolysis inhibition (iodoacetate), glucose deprivation, glycogen depletion, and lactate accumulation were also investigated. In untreated hearts, ROS production peaked at 10.8 ± 3.3, 9 ± 0.8, and 4.8 ± 0.4 min (means ± SD; n = 4) of reoxygenation in the atria, ventricle, and outflow tract, respectively, and was associated with arrhythmias. Functional recovery was complete after 30-40 min. At reoxygenation, 1) the respiratory chain and NADPH oxidases were the main sources of ROS in the atria and outflow tract, respectively; 2) glucose deprivation decreased, whereas glycogen depletion increased, oxidative stress; 3) lactate worsened oxidant stress via NADPH oxidase activation; 4) glycolysis blockade enhanced ROS production; 5) no nitrosative stress was detectable; and 6) the glutathione redox cycle appeared to be a major antioxidant system. Thus, the glycolytic pathway plays a predominant role in reoxygenation-induced oxidative stress during early cardiogenesis. The relative contribution of mitochondria and extramitochondrial systems to ROS generation varies from one region to another and throughout reoxygenation.
Resumo:
Peroxisome proliferator-activated receptors (PPARs) are members of the nuclear hormone receptor superfamily that can be activated by various xenobiotics and natural fatty acids. These transcription factors primarily regulate genes involved in lipid metabolism and also play a role in adipocyte differentiation. We present the expression patterns of the PPAR subtypes in the adult rat, determined by in situ hybridization using specific probes for PPAR-alpha, -beta and -gamma, and by immunohistochemistry using a polyclonal antibody that recognizes the three rat PPAR subtypes. In numerous cell types from either ectodermal, mesodermal, or endodermal origin, PPARs are coexpressed, with relative levels varying between them from one cell type to the other. PPAR-alpha is highly expressed in hepatocytes, cardiomyocytes, enterocytes, and the proximal tubule cells of kidney. PPAR-beta is expressed ubiquitously and often at higher levels than PPAR-alpha and -gamma. PPAR-gamma is expressed predominantly in adipose tissue and the immune system. Our results suggest new potential directions to investigate the functions of the different PPAR subtypes.
Resumo:
Recent evidence suggests that lactate could be a preferential energy substrate transferred from astrocytes to neurons. This would imply the presence of specific transporters for lactate on both cell types. We have investigated the immunohistochemical localization of two monocarboxylate transporters, MCT1 and MCT2, in the adult mouse brain. Using specific antibodies raised against MCT1 and MCT2, we found strong immunoreactivity for each transporter in glia limitans, ependymocytes and several microvessel-like elements. In addition, small processes distributed throughout the cerebral parenchyma were immunolabeled for monocarboxylate transporters. Double immunofluorescent labeling and confocal microscopy examination of these small processes revealed no co-localization between glial fibrillary acidic protein and monocarboxylate transporters, although many glial fibrillary acidic protein-positive processes were often in close apposition to elements labeled for monocarboxylate transporters. In contrast, several elements expressing the S100beta protein, another astrocytic marker found to be located in distinct parts of the same cell when compared with glial fibrillary acidic protein, were also strongly immunoreactive for MCT1, suggesting expression of this transporter by astrocytes. In contrast, MCT2 was expressed in a small subset of microtubule-associated protein-2-positive elements, indicating a neuronal localization. In conclusion, these observations are consistent with the possibility that lactate, produced and released by astrocytes (via MCT1), could be taken up (via MCT2) and used by neurons as an energy substrate.
Resumo:
The differential distribution and phosphorylation of tau proteins in cat cerebellum was studied with two well characterized antibodies, TAU-1 and TAU-2. TAU-1 detects tau proteins in axons, and the epitope in perikarya and dendrites is masked by phosphorylation. TAU-2 detects a phosphorylation-independent epitope on tau proteins. The molecular composition of tau proteins in the range of 45 kD to 64 kD at birth changed after the first postnatal month to a set of several adult variants of higher molecular weights in the range of 59 kD to 95 kD. The appearance of tau proteins in subsets of axons corresponds to the axonal maturation of cerebellar local-circuit neurons in granular and molecular layers and confirms previous studies. Tau proteins were also identified in synapses by immunofluorescent double-staining with synapsin I, located in the pinceau around the Purkinje cells, and in glomeruli. Dephosphorylation of juvenile cerebellar tissue by alkaline phosphatase indicated indirectly the presence of differentially phosphorylated tau forms mainly in juvenile ages. Additional TAU-1 immunoreactivity was unmasked in numerous perikarya and dendrites of stellate cells, and in cell bodies of granule cells. Purkinje cell bodies were stained transiently at juvenile ages. During postnatal development, the intensity of the phosphate-dependent staining decreased, suggesting that phosphorylation of tau proteins in perikarya and dendrites may be essential for early steps in neuronal morphogenesis during cat cerebellum development.
Resumo:
We have used monoclonal antibodies specific for acetylated and non-acetylated alpha-tubulin to localize microtubules containing acetylated alpha-tubulin in all developmental forms of the life cycle of Trypanosoma cruzi. This was demonstrated using immunofluorescence and by transmission electron microscopy of thin sections, negative stained cells, and replicas of whole Triton X-100 extracted cells immunolabeled with antibody-gold complex. The antibody specific for acetylated alpha-tubulin (6-11B-1) binds to the flagellar, as well as to the sub-pellicular microtubules. The extent of labeling of the sub-pellicular microtubules with the monoclonal antibody recognized alpha-acetylated tubulin was smaller than that observed with the antibody which recognizes all tubulin isoforms. In relation to the developmental forms, the extent of labeling of the microtubules with antibody 6-11B-1 was larger in epimastigote and trypomastigote than in amastigote forms. Incubation of the parasites for 1 h at 0º C or in the presence of either colchicine or vinblastine did not interfere with the sub-pellicular microtubules. These observations, in agreement with those reported for Trypanosoma brucei brucei (Schneider et al., 1987; Schulze et al., 1987; Sasse per cent Gull, 1988) indicate that the sub-pellicular microtubules of trypanosomatids represent stable microtubules containing acetylated alpha-tubulin (or the alpha 3-tubulin isotype).
Resumo:
1. The mechanisms underlying host choice strategies by parasites remain poorly understood. We address two main questions: (i) do parasites prefer vulnerable or well-fed hosts, and (ii) to what extent is a parasite species specialized towards a given host species? 2. To answer these questions, we investigated, both in the field and in the lab, a host-parasite system comprising one ectoparasitic mite (Spinturnix myoti) and its major hosts, two sibling species of bats (Myotis myotis and M blythii), which coexist intimately in colonial nursery roosts. We exploited the close physical associations between host species in colonial roosts as well as naturally occurring annual variation in food abundance to investigate the relationships between parasite intensities and (i) host species and (ii) individual nutritional status. 3. Although horizontal transmission of parasites was facilitated by the intimate aggregation of bats within their colonial clusters, we found significant interspecific differences in degree of infestation throughout the 6 years of the study, with M. myotis always more heavily parasitized than M. blythii. This pattern was replicated in a laboratory experiment in which any species-specific resistance induced by exploitation of different trophic niches in nature was removed. 4. Within both host species, S. myoti showed a clear preference for individuals with higher nutritional status. In years with high resource abundance, both bat hosts harboured more parasites than in low-resource years, although the relative difference in parasite burden across species was maintained. This pattern of host choice was also replicated in the laboratory. When offered a choice, parasites always colonized better-fed individuals. 5. These results show first that host specialization in our study system occurred. Second, immediate parasite choice clearly operated towards the selection of hosts in good nutritional state.
Resumo:
Dissecting drivers of plant defence investment remains central for understanding the assemblage of communities across different habitats. There is increasing evidence that direct defence strategies against herbivores, including secondary metabolites production, differ along ecological gradients in response to variation in biotic and abiotic conditions. In contrast, intraspecific variation in indirect defences remains unexplored. Here, we investigated variation in herbivory rate, resistance to herbivores, and indirect defences in ant-attracting Vicia species along the elevation gradient of the Alps. Specifically, we compared volatile organic compounds (VOCs) and ant attraction in high and low elevation ecotypes. Consistent with adaptation to the lower herbivory conditions that we detected at higher elevations in the field, high elevation plants were visited by fewer ants and were more susceptible to herbivore attack. In parallel, constitutive volatile organic compound production and subsequent ant attraction were lower in the high elevation ecotypes. We observed an elevation-driven trade-off between constitutive and inducible production of VOCs and ant attraction along the environmental cline. At higher elevations, inducible defences increased, while constitutive defence decreased, suggesting that the high elevation ecotypes compensate for lower indirect constitutive defences only after herbivore attack. Synthesis. Overall, direct and indirect defences of plants vary along elevation gradients. Our findings show that plant allocation to defences are subject to trade-offs depending on local conditions, and point to a feedback mechanism linking local herbivore pressure, predator abundance and the defence investment of plants.
Resumo:
Liver fatty-acid-binding protein (L-FABP) is a cytoplasmic polypeptide that binds with strong affinity especially to long-chain fatty acids (LCFAs). It is highly expressed in both the liver and small intestine, where it is thought to have an essential role in the control of the cellular fatty acid (FA) flux. Because expression of the gene encoding L-FABP is increased by both fibrate hypolipidaemic drugs and LCFAs, it seems to be under the control of transcription factors, termed peroxisome-proliferator-activated receptors (PPARs), activated by fibrate or FAs. However, the precise molecular mechanism by which these regulations take place remain to be fully substantiated. Using transfection assays, we found that the different PPAR subtypes (alpha, gamma and delta) are able to mediate the up-regulation by FAs of the gene encoding L-FABP in vitro. Through analysis of LCFA- and fibrate-mediated effects on L-FABP mRNA levels in wild-type and PPARalpha-null mice, we have found that PPARalpha in the intestine does not constitute a dominant regulator of L-FABP gene expression, in contrast with what is known in the liver. Only the PPARdelta/alpha agonist GW2433 is able to up-regulate the gene encoding L-FABP in the intestine of PPARalpha-null mice. These findings demonstrate that PPARdelta can act as a fibrate/FA-activated receptor in tissues in which it is highly expressed and that L-FABP is a PPARdelta target gene in the small intestine. We propose that PPARdelta contributes to metabolic adaptation of the small intestine to changes in the lipid content of the diet.
Resumo:
A panel of monoclonal antibodies specific of alpha-tubulin (TU-01, TU-09) and beta-tubulin (TU-06, TU-13) subunits was used to study the location of N-terminal structural domains of tubulin in adult mouse brain. The specificity of antibodies was confirmed b immunoblotting experiments. Immunohistochemical staining of vibratome sections from cerebral cortex, cerebellum, hippocampus, and corpus callosum showed that antibodies TU-01, TU-09, and TU-13 reacted with neuronal and glial cells and their processes, whereas the TU-06 antibody stained only the perikarya. Dendrites and axons were either unstained or their staining was very weak. As the TU-06 epitope is located on the N-terminal structural domain of beta-tubulin, the observed staining pattern cannot be interpreted as evidence of a distinct subcellular localization of beta-tubulin isotypes or known post-translational modifications. The limited distribution of the epitope could, rather, reflect differences between the conformations of tubulin molecules in microtubules of somata and neurites or, alternatively, a specific masking of the corresponding region on the N-terminal domain of beta-tubulin by interacting protein(s) in dendrites and axons.