957 resultados para Differential Equations with "maxima"
Resumo:
An improved class of nonlinear bidirectional Boussinesq equations of sixth order using a wave surface elevation formulation is derived. Exact travelling wave solutions for the proposed class of nonlinear evolution equations are deduced. A new exact travelling wave solution is found which is the uniform limit of a geometric series. The ratio of this series is proportional to a classical soliton-type solution of the form of the square of a hyperbolic secant function. This happens for some values of the wave propagation velocity. However, there are other values of this velocity which display this new type of soliton, but the classical soliton structure vanishes in some regions of the domain. Exact solutions of the form of the square of the classical soliton are also deduced. In some cases, we find that the ratio between the amplitude of this wave and the amplitude of the classical soliton is equal to 35/36. It is shown that different families of travelling wave solutions are associated with different values of the parameters introduced in the improved equations.
Resumo:
There is a family of models with Physical, Human capital and R&D for which convergence properties have been discussed (Arnold, 2000a; Gómez, 2005). However, spillovers in R&D have been ignored in this context. We introduce spillovers in this model and derive its steady-state and stability properties. This new feature implies that the model is characterized by a system of four differential equations. A unique Balanced Growth Path along with a two dimensional stable manifold are obtained under simple and reasonable conditions. Transition is oscillatory toward the steady-state for plausible values of parameters.
Resumo:
The convergence features of an Endogenous Growth model with Physical capital, Human Capital and R&D have been studied. We add an erosion effect (supported by empirical evidence) to this model, and fully characterize its convergence properties. The dynamics is described by a fourth-order system of differential equations. We show that the model converges along a one-dimensional stable manifold and that its equilibrium is saddle-path stable. We also argue that one of the implications of considering this “erosion effect” is the increase in the adherence of the model to data.
Resumo:
In this work we perform a comparison of two different numerical schemes for the solution of the time-fractional diffusion equation with variable diffusion coefficient and a nonlinear source term. The two methods are the implicit numerical scheme presented in [M.L. Morgado, M. Rebelo, Numerical approximation of distributed order reaction- diffusion equations, Journal of Computational and Applied Mathematics 275 (2015) 216-227] that is adapted to our type of equation, and a colocation method where Chebyshev polynomials are used to reduce the fractional differential equation to a system of ordinary differential equations
Resumo:
We consider multidimensional backward stochastic differential equations (BSDEs). We prove the existence and uniqueness of solutions when the coefficient grow super-linearly, and moreover, can be neither locally Lipschitz in the variable y nor in the variable z. This is done with super-linear growth coefficient and a p-integrable terminal condition (p & 1). As application, we establish the existence and uniqueness of solutions to degenerate semilinear PDEs with superlinear growth generator and an Lp-terminal data, p & 1. Our result cover, for instance, the case of PDEs with logarithmic nonlinearities.
Resumo:
The present notes are intended to present a detailed review of the existing results in dissipative kinetic theory which make use of the contraction properties of two main families of probability metrics: optimal mass transport and Fourier-based metrics. The first part of the notes is devoted to a self-consistent summary and presentation of the properties of both probability metrics, including new aspects on the relationships between them and other metrics of wide use in probability theory. These results are of independent interest with potential use in other contexts in Partial Differential Equations and Probability Theory. The second part of the notes makes a different presentation of the asymptotic behavior of Inelastic Maxwell Models than the one presented in the literature and it shows a new example of application: particle's bath heating. We show how starting from the contraction properties in probability metrics, one can deduce the existence, uniqueness and asymptotic stability in classical spaces. A global strategy with this aim is set up and applied in two dissipative models.
Resumo:
This paper considers the lag structures of dynamic models in economics, arguing that the standard approach is too simple to capture the complexity of actual lag structures arising, for example, from production and investment decisions. It is argued that recent (1990s) developments in the the theory of functional differential equations provide a means to analyse models with generalised lag structures. The stability and asymptotic stability of two growth models with generalised lag structures are analysed. The paper concludes with some speculative discussion of time-varying parameters.
Resumo:
Evolution of compositions in time, space, temperature or other covariates is frequentin practice. For instance, the radioactive decomposition of a sample changes its composition with time. Some of the involved isotopes decompose into other isotopes of thesample, thus producing a transfer of mass from some components to other ones, butpreserving the total mass present in the system. This evolution is traditionally modelledas a system of ordinary di erential equations of the mass of each component. However,this kind of evolution can be decomposed into a compositional change, expressed interms of simplicial derivatives, and a mass evolution (constant in this example). A rst result is that the simplicial system of di erential equations is non-linear, despiteof some subcompositions behaving linearly.The goal is to study the characteristics of such simplicial systems of di erential equa-tions such as linearity and stability. This is performed extracting the compositional differential equations from the mass equations. Then, simplicial derivatives are expressedin coordinates of the simplex, thus reducing the problem to the standard theory ofsystems of di erential equations, including stability. The characterisation of stabilityof these non-linear systems relays on the linearisation of the system of di erential equations at the stationary point, if any. The eigenvelues of the linearised matrix and theassociated behaviour of the orbits are the main tools. For a three component system,these orbits can be plotted both in coordinates of the simplex or in a ternary diagram.A characterisation of processes with transfer of mass in closed systems in terms of stability is thus concluded. Two examples are presented for illustration, one of them is aradioactive decay
Resumo:
We present a continuum formalism for modeling growing random networks under addition and deletion of nodes based on a differential mass balance equation. As examples of its applicability, we obtain new results on the degree distribution for growing networks with a uniform attachment and deletion of nodes, and complete some recent results on growing networks with preferential attachment and uniform removal
Resumo:
The asymptotic speed problem of front solutions to hyperbolic reaction-diffusion (HRD) equations is studied in detail. We perform linear and variational analyses to obtain bounds for the speed. In contrast to what has been done in previous work, here we derive upper bounds in addition to lower ones in such a way that we can obtain improved bounds. For some functions it is possible to determine the speed without any uncertainty. This is also achieved for some systems of HRD (i.e., time-delayed Lotka-Volterra) equations that take into account the interaction among different species. An analytical analysis is performed for several systems of biological interest, and we find good agreement with the results of numerical simulations as well as with available observations for a system discussed recently
Resumo:
The dynamics of the control of Aedes (Stegomyia) aegypti Linnaeus, (Diptera, Culicidae) by Bacillus thuringiensis var israelensis has been related with the temperature, density and concentration of the insecticide. A mathematical model for biological control of Aedes aegypti with Bacillus thuringiensis var israelensis (Bti) was constructed by using data from the literature regarding the biology of the vector. The life cycle was described by differential equations. Lethal concentrations (LC50 and LC95) of Bti were determined in the laboratory under different experimental conditions. Temperature, colony, larvae density and bioinsecticide concentration presented marked differences in the analysis of the whole set of variables; although when analyzed individually, only the temperature and concentration showed changes. The simulations indicated an inverse relationship between temperature and mosquito population, nonetheless, faster growth of populations is reached at higher temperatures. As conclusion, the model suggests the use of integrated control strategies for immature and adult mosquitoes in order to achieve a reduction of Aedes aegypti.
Resumo:
BACKGROUND: New HIV infections in men who have sex with men (MSM) have increased in Switzerland since 2000 despite combination antiretroviral therapy (cART). The objectives of this mathematical modelling study were: to describe the dynamics of the HIV epidemic in MSM in Switzerland using national data; to explore the effects of hypothetical prevention scenarios; and to conduct a multivariate sensitivity analysis. METHODOLOGY/PRINCIPAL FINDINGS: The model describes HIV transmission, progression and the effects of cART using differential equations. The model was fitted to Swiss HIV and AIDS surveillance data and twelve unknown parameters were estimated. Predicted numbers of diagnosed HIV infections and AIDS cases fitted the observed data well. By the end of 2010, an estimated 13.5% (95% CI 12.5, 14.6%) of all HIV-infected MSM were undiagnosed and accounted for 81.8% (95% CI 81.1, 82.4%) of new HIV infections. The transmission rate was at its lowest from 1995-1999, with a nadir of 46 incident HIV infections in 1999, but increased from 2000. The estimated number of new infections continued to increase to more than 250 in 2010, although the reproduction number was still below the epidemic threshold. Prevention scenarios included temporary reductions in risk behaviour, annual test and treat, and reduction in risk behaviour to levels observed earlier in the epidemic. These led to predicted reductions in new infections from 2 to 26% by 2020. Parameters related to disease progression and relative infectiousness at different HIV stages had the greatest influence on estimates of the net transmission rate. CONCLUSIONS/SIGNIFICANCE: The model outputs suggest that the increase in HIV transmission amongst MSM in Switzerland is the result of continuing risky sexual behaviour, particularly by those unaware of their infection status. Long term reductions in the incidence of HIV infection in MSM in Switzerland will require increased and sustained uptake of effective interventions.
Resumo:
We study the dynamics of generic reaction-diffusion fronts, including pulses and chemical waves, in the presence of multiplicative noise. We discuss the connection between the reaction-diffusion Langevin-like field equations and the kinematic (eikonal) description in terms of a stochastic moving-boundary or sharp-interface approximation. We find that the effective noise is additive and we relate its strength to the noise parameters in the original field equations, to first order in noise strength, but including a partial resummation to all orders which captures the singular dependence on the microscopic cutoff associated with the spatial correlation of the noise. This dependence is essential for a quantitative and qualitative understanding of fluctuating fronts, affecting both scaling properties and nonuniversal quantities. Our results predict phenomena such as the shift of the transition point between the pushed and pulled regimes of front propagation, in terms of the noise parameters, and the corresponding transition to a non-Kardar-Parisi-Zhang universality class. We assess the quantitative validity of the results in several examples including equilibrium fluctuations and kinetic roughening. We also predict and observe a noise-induced pushed-pulled transition. The analytical predictions are successfully tested against rigorous results and show excellent agreement with numerical simulations of reaction-diffusion field equations with multiplicative noise.
Resumo:
A precise and simple computational model to generate well-behaved two-dimensional turbulent flows is presented. The whole approach rests on the use of stochastic differential equations and is general enough to reproduce a variety of energy spectra and spatiotemporal correlation functions. Analytical expressions for both the continuous and the discrete versions, together with simulation algorithms, are derived. Results for two relevant spectra, covering distinct ranges of wave numbers, are given.
Resumo:
Semiclassical Einstein-Langevin equations for arbitrary small metric perturbations conformally coupled to a massless quantum scalar field in a spatially flat cosmological background are derived. Use is made of the fact that for this problem the in-in or closed time path effective action is simply related to the Feynman-Vernon influence functional which describes the effect of the ``environment,'' the quantum field which is coarse grained here, on the ``system,'' the gravitational field which is the field of interest. This leads to identify the dissipation and noise kernels in the in-in effective action, and to derive a fluctuation-dissipation relation. A tensorial Gaussian stochastic source which couples to the Weyl tensor of the spacetime metric is seen to modify the usual semiclassical equations which can be veiwed now as mean field equsations. As a simple application we derive the correlation functions of the stochastic metric fluctuations produced in a flat spacetime with small metric perturbations due to the quantum fluctuations of the matter field coupled to these perturbations.