999 resultados para Didactic model
Resumo:
Introduction. Lung tranplantation, a consolidated treatment for end-stage lung disease, utilizes preservation solutions, such as low potassium dextran (LPD), to mitigate ischemia reperfusion injury. We sought the local development of LPD solutions in an attempt to facilitate access and enhance usage. We also sought to evaluate the effectiveness of a locally manufactured LPD solution in a rat model of ex vivo lung perfusion. Methods. We randomized the following groups \?\adult of male Wistar rats (n = 25 each): Perfadex (LPD; Vitro life, Sweden); locally manufactured LPD-glucose (LPDnac) (Farmoterapica, Brazil), and normal saline solution (SAL) with 3 ischemic times (6, 12, and 24 hours). The harvested heart lung blocks were flushed with solution at 4 C. After storage, the blocks were connected to an IL-2 Isolated Perfused Rat or Guinea Pig Lung System (Harvard Apparatus) and reperfused with homologous blood for 60 minutes. Respiratory mechanics, pulmonary artery pressure, perfusate blood gas analysis, and lung weight were measured at 10-minute intervals. Comparisons between groups and among ischemic times were performed using analysis of variance with a 5% level of significance. Results. Lungs preserved for 24 hours were nonviable and therefore excluded from the analysis. Those preserved for 6 hours showed better ventilatory mechanics when compared with 12 hours. The oxygenation capacity was not different between lungs flushed with LPD or LPDnac, regardless of the ischemic time. SAL lungs showed higher PCO(2) values than the other solutions. Lung weight increased over time during perfusion; however, there were no significant differences among the tested solutions (LPD, P = .23; LPDnac, P = .41; SAL, P = .26). We concluded that the LPDnac solution results in gas exchange were comparable to the original LPD (Perfadex); however ventilatory mechanics and edema formation were better with LPD, particularly among lungs undergoing 6 hours of cold ischemia.
Resumo:
A continuum model for regular block structures is derived by replacing the difference quotients of the discrete equations by corresponding differential quotients. The homogenization procedure leads to an anisotropic Cosserat Continuum. For elastic block interactions the dispersion relations of the discrete and the continuous models are derived and compared. Yield criteria for block tilting and sliding are formulated. An extension of the theory for large deformation is proposed. (C) 1997 by John Wiley & Sons, Ltd.
Resumo:
The optimal dosing schedule for melphalan therapy of recurrent malignant melanoma in isolated limb perfusions has been examined using a physiological pharmacokinetic model with data from isolated rat hindlimb perfusions (IRHP), The study included a comparison of melphalan distribution in IRHP under hyperthermia and normothermia conditions. Rat hindlimbs were perfused with Krebs-Henseleit buffer containing 4.7% bovine serum albumin at 37 or 41.5 degrees C at a flow rate of 4 ml/min. Concentrations of melphalan in perfusate and tissues were determined by high performance liquid chromatography with fluorescence detection, The concentration of melphalan in perfusate and tissues was linearly related to the input concentration. The rate and amount of melphalan uptake into the different tissues was higher at 41.5 degrees C than at 37 degrees C. A physiological pharmacokinetic model was validated from the tissue and perfusate time course of melphalan after melphalan perfusion. Application of the model involved the amount of melphalan exposure in the muscle, skin and fat in a recirculation system was related to the method of melphalan administration: single bolus > divided bolus > infusion, The peak concentration of melphalan in the perfusate was also related to the method of administration in the same order, Infusing the total dose of melphalan over 20 min during a 60 min perfusion optimized the exposure of tissues to melphalan whilst minimizing the peak perfusate concentration of melphalan. It is suggested that this method of melphalan administration may be preferable to other methods in terms of optimizing the efficacy of melphalan whilst minimizing the limb toxicity associated with its use in isolated limb perfusion.
Resumo:
A risk score model was developed based in a population of 1,224 individuals from the general population without known diabetes aging 35 years or more from an urban Brazilian population sample in order to select individuals who should be screened in subsequent testing and improve the efficacy of public health assurance. External validation was performed in a second, independent, population from a different city ascertained through a similar epidemiological protocol. The risk score was developed by multiple logistic regression and model performance and cutoff values were derived from a receiver operating characteristic curve. Model`s capacity of predicting fasting blood glucose levels was tested analyzing data from a 5-year follow-up protocol conducted in the general population. Items independently and significantly associated with diabetes were age, BMI and known hypertension. Sensitivity, specificity and proportion of further testing necessary for the best cutoff value were 75.9, 66.9 and 37.2%, respectively. External validation confirmed the model`s adequacy (AUC equal to 0.72). Finally, model score was also capable of predicting fasting blood glucose progression in non-diabetic individuals in a 5-year follow-up period. In conclusion, this simple diabetes risk score was able to identify individuals with an increased likelihood of having diabetes and it can be used to stratify subpopulations in which performing of subsequent tests is necessary and probably cost-effective.
Resumo:
We describe the twisted affine superalgebra sl(2\2)((2)) and its quantized version U-q[sl(2\2)((2))]. We investigate the tensor product representation of the four-dimensional grade star representation for the fixed-point sub superalgebra U-q[osp(2\2)]. We work out the tensor product decomposition explicitly and find that the decomposition is not completely reducible. Associated with this four-dimensional grade star representation we derive two U-q[osp(2\2)] invariant R-matrices: one of them corresponds to U-q [sl(2\2)(2)] and the other to U-q [osp(2\2)((1))]. Using the R-matrix for U-q[sl(2\2)((2))], we construct a new U-q[osp(2\2)] invariant strongly correlated electronic model, which is integrable in one dimension. Interestingly this model reduces in the q = 1 limit, to the one proposed by Essler et al which has a larger sl(2\2) symmetry.
Resumo:
While many studies have addressed the direct effects of 1 alpha,25(OH)(2)D(3) on breast cancer (BC) cells, stromal-epithelial interactions, which are important for the tumor development, have been largely ignored. In addition, high concentrations of the hormone, which cannot be attained in vivo, have been used. Our aim was to establish a more physiological breast cancer model, represented by BC tissue slices, which maintain epithelial-mesenchymal interactions, cultured with a relatively low 1 alpha,25(OH)(2)D(3) concentration, in order to evaluate the vitamin D pathway. Freshly excised human BC samples were sliced and cultured in complete culture media containing vehicle, 0.5 nM or 100 nM 1 alpha,25(OH)(2)D(3) for 24 h. BC slices remained viable for at least 24 h, as evaluated by preserved tissue morphology in hematoxylin and eosin (HE) stained sections and bromodeoxyuridine (BrdU) incorporation by 10% of tumor cells. VDR mRNA expression was detected in all samples and CYP24A1 mRNA expression was induced by 1 alpha,25(OH)(2)D(3) in both concentrations (but mainly with 100 nM). Our results indicate that the vitamin D signaling pathway is functional in BC slices, a model which preserves stromal-epithelial interactions and mimics in vivo conditions. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
For the purpose of developing a longitudinal model to predict hand-and-foot syndrome (HFS) dynamics in patients receiving capecitabine, data from two large phase III studies were used. Of 595 patients in the capecitabine arms, 400 patients were randomly selected to build the model, and the other 195 were assigned for model validation. A score for risk of developing HFS was modeled using the proportional odds model, a sigmoidal maximum effect model driven by capecitabine accumulation as estimated through a kinetic-pharmacodynamic model and a Markov process. The lower the calculated creatinine clearance value at inclusion, the higher was the risk of HFS. Model validation was performed by visual and statistical predictive checks. The predictive dynamic model of HFS in patients receiving capecitabine allows the prediction of toxicity risk based on cumulative capecitabine dose and previous HFS grade. This dose-toxicity model will be useful in developing Bayesian individual treatment adaptations and may be of use in the clinic.
Resumo:
Soil erosion in the Philippine uplands is severe. Hedgerow intercropping is widely advocated as an effective means of controlling soil erosion from annual cropping systems in the uplands. However, few farmers adopt hedgerow intercropping even in areas where it has been vigorously promoted. This may be because farmers find hedgerow intercropping to be uneconomic compared to traditional methods of farming. This paper reports a cost-benefit analysis comparing the economic returns from traditional maize farming with those from hedgerow intercropping in an upland community with no past adoption of hedgerows. A simple erosion/productivity model, Soil Changes Under Agroforestry (SCUAF), is used to predict maize yields over 25 years. Economic data were collected through key informant surveys with experienced maize farmers in an upland community. Traditional methods of open-field farming of maize are economically attractive to farmers in the Philippine uplands. In the short term, establishment costs are a major disincentive to the adoption of hedgerow intercropping. In the long term, higher economic returns from hedgerow intercropping compared to open-field farming are realised, but these lie beyond farmers' limited planning horizons.
Resumo:
Experimental data for E. coli debris size reduction during high-pressure homogenisation at 55 MPa are presented. A mathematical model based on grinding theory is developed to describe the data. The model is based on first-order breakage and compensation conditions. It does not require any assumption of a specified distribution for debris size and can be used given information on the initial size distribution of whole cells and the disruption efficiency during homogenisation. The number of homogeniser passes is incorporated into the model and used to describe the size reduction of non-induced stationary and induced E. coil cells during homogenisation. Regressing the results to the model equations gave an excellent fit to experimental data ( > 98.7% of variance explained for both fermentations), confirming the model's potential for predicting size reduction during high-pressure homogenisation. This study provides a means to optimise both homogenisation and disc-stack centrifugation conditions for recombinant product recovery. (C) 1997 Elsevier Science Ltd.
Resumo:
The dispersion model with mixed boundary conditions uses a single parameter, the dispersion number, to describe the hepatic elimination of xenobiotics and endogenous substances. An implicit a priori assumption of the model is that the transit time density of intravascular indicators is approximated by an inverse Gaussian distribution. This approximation is limited in that the model poorly describes the tail part of the hepatic outflow curves of vascular indicators. A sum of two inverse Gaussian functions is proposed as ail alternative, more flexible empirical model for transit time densities of vascular references. This model suggests that a more accurate description of the tail portion of vascular reference curves yields an elimination rate constant (or intrinsic clearance) which is 40% less than predicted by the dispersion model with mixed boundary conditions. The results emphasize the need to accurately describe outflow curves in using them as a basis for determining pharmacokinetic parameters using hepatic elimination models. (C) 1997 Society for Mathematical Biology.
Resumo:
The distributed-tubes model of hepatic elimination is extended to include intermixing between sinusoids, resulting in the formulation of a new, interconnected-tubes model. The new model is analysed for the simple case of two interconnected tubes, where an exact solution is obtained. For the case of many strongly-interconnected tubes, it is shown that a zeroth-order approximation leads to the convection-dispersion model. As a consequence the dispersion number is expressed, for the first time, in terms of its main physiological determinants: heterogeneity of flow and density of interconnections between sinusoids. The analysis of multiple indicator dilution data from a perfused liver preparation using the simplest version of the model yields the estimate 10.3 for the average number of interconnections. The problem of boundary conditions for the dispersion model is considered from the viewpoint that the dispersion-convection equation is a zeroth-order approximation to the equations for the interconnected-tubes model. (C) 1997 Academic Press Limited.
Resumo:
A new conceptual model for soil pore-solid structure is formalized. Soil pore-solid structure is proposed to comprise spatially abutting elements each with a value which is its membership to the fuzzy set ''pore,'' termed porosity. These values have a range between zero (all solid) and unity (all pore). Images are used to represent structures in which the elements are pixels and the value of each is a porosity. Two-dimensional random fields are generated by allocating each pixel a porosity by independently sampling a statistical distribution. These random fields are reorganized into other pore-solid structural types by selecting parent points which have a specified local region of influence. Pixels of larger or smaller porosity are aggregated about the parent points and within the region of interest by controlled swapping of pixels in the image. This creates local regions of homogeneity within the random field. This is similar to the process known as simulated annealing. The resulting structures are characterized using one-and two-dimensional variograms and functions describing their connectivity. A variety of examples of structures created by the model is presented and compared. Extension to three dimensions presents no theoretical difficulties and is currently under development.
Resumo:
Vitamin D (VD), is a steroid hormone with multiple functions in the central nervous system (CNS), producing numerous physiological effects mediated by its receptor (VDR). Clinical and experimental studies have shown a link between VD dysfunction and epilepsy. Along these lines, the purpose of our work was to analyze the relative expression of VDR mRNA in the hippocampal formation of rats during the three periods of pilocarpine-induced epilepsy. Male Wistar rats were divided into five groups: (1) control group; rats that received saline 0.9%, i.p. and were killed 7 days after its administration (CTRL, n = 8), (2) SE group; rats that received pilocarpine and were killed 4 h after SE (SE, n = 8), (3) Silent group-7 days; rats that received pilocarpine and were killed 7 days after SE (SIL 7d, n = 8), (4) Silent group-14 days; rats that received pilocarpine and were killed 14 days after SE (SIL 14d, n = 8), (5) Chronic group; rats that received pilocarpine and were killed 60 days after the first spontaneous seizure, (chronic, n = 8). The relative expression of VDR mRNA was determined by real-time PCR. Our results showed an increase of the relative expression of VDR mRNA in the SIL 7 days, SIL 14 days and Chronic groups, respectively (0.060 +/- 0.024; 0.052 +/- 0.035; 0.085 +/- 0.055) when compared with the CTRL and SE groups (0.019 +/- 0.017; 0.019 +/- 0.025). These data suggest the VDR as a possible candidate participating in the epileptogenesis process of the pilocarpine model of epilepsy. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
Aerobic training (AT) decreases dyspnoea and exercise-induced bronchospasm, and improves aerobic capacity and quality of life; however, the mechanisms for such benefits remain poorly understood. The aim of the present study was to evaluate the AT effects in a chronic model of allergic lung inflammation in mice after the establishment of airway inflammation and remodelling. Mice were divided into the control group, AT group, ovalbumin (OVA) group or OVA+AT group and exposed to saline or OVA. AT was started on day 28 for 60 min five times per week for 4 weeks. Respiratory mechanics, specific immunoglobulin (Ig)E and IgG(1), collagen and elastic fibres deposition, smooth muscle thickness, epithelial mucus, and peribronchial density of eosinophils, CD3+ and CD4+, IL-4, IL-5, IL-13, interferon-gamma, IL-2, IL-1ra, IL-10, nuclear factor (NF)-kappa B and Foxp3 were evaluated. The OVA group showed an increase in IgE and IgG1, eosinophils, CD3+, CD4+, IL-4, IL-5, IL-13, NF-kappa B, collagen and elastic, mucus synthesis, smooth muscle thickness and lung tissue resistance and elastance. The OVA+AT group demonstrated an increase of IgE and IgG(1), and reduction of eosinophils, CD3+, CD4+, IL-4, IL-5, IL-13, NF-kappa B, airway remodelling, mucus synthesis, smooth muscle thickness and tissue resistance and elastance compared with the OVA roup (p < 0.05). The OVA+AT group also showed an increase in IL-10 and IL-1ra (p < 0.05), independently of Foxp3. AT reversed airway inflammation and remodelling and T-helper cell 2 response, and improved respiratory mechanics. These results seem to occur due to an increase in the expression of IL-10 and IL-1ra and a decrease of NF-kappa B.