976 resultados para Diagnostic techniques and procedures
Resumo:
To retrospectively assess the diagnostic sensitivity of 45° Dunn view and cross-table lateral radiographs for the assessment of cam deformity by comparison with radial MRI.
Resumo:
The primary aim was to examine the utility of DSM-IV criteria in predicting treatment outcome in a sample of adolescents with eating disorders.
Resumo:
Poorly differentiated thyroid carcinomas (PDTC) are an ongoing diagnostic challenge. Although the Turin consensus criteria for PDTC excluded consideration of oncocytic tumours, the World Health Organization (WHO) classification does recognise an oncocytic variant of conventional PDTC. The aims of this study were to establish whether the Turin criteria can be applied to oncocytic PDTC, and to determine if there are prognostic differences between conventional and oncocytic PDTC.
Resumo:
Targeting of tumours positive for somatostatin receptors (sst) with radiolabelled peptides is of interest for tumour localization, staging, therapy follow-up and targeted radionuclide therapy. The peptides used clinically are exclusively agonists, but recently we have shown that the radiolabelled somatostatin-based antagonist (111)In-DOTA-sst2-ANT may be preferable to agonists. However, a comprehensive study of this radiolabelled antagonist to determine its significance was lacking. The present report describes the evaluation of this novel antagonist labelled with (111)In and (177)Lu in three different tumour models.
Resumo:
The German version of the Conners Adult ADHD Rating Scales (CAARS) has proven to show very high model fit in confirmative factor analyses with the established factors inattention/memory problems, hyperactivity/restlessness, impulsivity/emotional lability, and problems with self-concept in both large healthy control and ADHD patient samples. This study now presents data on the psychometric properties of the German CAARS-self-report (CAARS-S) and observer-report (CAARS-O) questionnaires.
Resumo:
The design of a high-density neural recording system targeting epilepsy monitoring is presented. Circuit challenges and techniques are discussed to optimize the amplifier topology and the included OTA. A new platform supporting active recording devices targeting wireless and high-resolution focus localization in epilepsy diagnosis is also proposed. The post-layout simulation results of an amplifier dedicated to this application are presented. The amplifier is designed in a UMC 0.18µm CMOS technology, has an NEF of 2.19 and occupies a silicon area of 0.038 mm(2), while consuming 5.8 µW from a 1.8-V supply.
Resumo:
OBJECTIVES: To assess magnetic resonance (MR)-colonography (MRC) for detection of colorectal lesions using two different T1w three-dimensional (3D)-gradient-recalled echo (GRE)-sequences and integrated parallel data acquisition (iPAT) at a 3.0 Tesla MR-unit. MATERIALS AND METHODS: In this prospective study, 34 symptomatic patients underwent dark lumen MRC at a 3.0 Tesla unit before conventional colonoscopy (CC). After colon distension with tap water, 2 high-resolution T1w 3D-GRE [3-dimensional fast low angle shot (3D-FLASH), iPAT factor 2 and 3D-volumetric interpolated breathhold examination (VIBE), iPAT 3] sequences were acquired without and after bolus injection of gadolinium. Prospective evaluation of MRC was performed. Image quality of the different sequences was assessed qualitatively and quantitatively. The findings of the same day CC served as standard of reference. RESULTS: MRC identified all polyps >5 mm (16 of 16) in size and all carcinomas (4 of 4) correctly. Fifty percent of the small polyps =5 mm (4 of 8) were visualized by MRC. Diagnostic quality was excellent in 94% (384 of 408 colonic segments) using the 3D-FLASH and in 92% (376 of 408) for the VIBE. The 3D-FLASH sequence showed a 3-fold increase in signal-to-noise ratio (8 +/- 3.3 standard deviation (SD) in lesions without contrast enhancement (CE); 24.3 +/- 7.8 SD after CE). For the 3D-VIBE sequence, signal-to-noise ratio doubled in the detected lesions (147 +/- 54 SD without and 292 +/- 168 SD after CE). Although image quality was ranked lower in the VIBE, the image quality score of both sequences showed no statistical significant difference (chi > 0.6). CONCLUSIONS: MRC using 3D-GRE-sequences and iPAT is feasible at 3.0 T-systems. The high-resolution 3D-FLASH was slightly preferred over the 3D-VIBE because of better image quality, although both used sequences showed no statistical significant difference.
Resumo:
PURPOSE OF REVIEW: The present contribution will illustrate some evolving concepts on the pathogenesis and clinical management of heparin-induced thrombocytopenia (HIT) and describe how we approach patients with suspected HIT at our institution. RECENT FINDINGS: HIT is caused by an autoimmune reaction leading to the formation of antibodies directed against platelet factor 4. Conditions favoring the development of anti-platelet factor 4/heparin antibodies differ from those required for the formation of macromolecular ternary complexes (HIT antibody/platelet factor 4/heparin), which are able to activate platelets and induce clinical HIT. HIT can be diagnosed by combining its pretest probability with the quantitative result of rapid HIT-antibody assays. Treatment of acute HIT requires inhibition of in-vivo thrombin generation by means of alternative nonheparin anticoagulant drugs, whose effective dosage appears to be significantly lower than the official recommendations. As HIT antibodies are transient, HIT patients can be re-exposed to heparin, provided that previous heparin treatment is remote and that anti-platelet factor 4/heparin antibodies are undetectable. SUMMARY: In recent years, there has been a continuing elucidation of pathogenic and clinically relevant issues, which are intellectually rewarding to follow and should enable us to offer a steadily improving treatment to the HIT patients we are in charge of.
Resumo:
OBJECTIVE: To analyze a series of carcinoma ex pleomorphic adenoma (CXPA) and to assess the diagnostic difficulties. STUDY DESIGN: The clinical presentation of 24 CXPAs was compared with 300 pleomorphic adenomas (PAs). Furthermore, pathohistological findings and follow-up results of CXPAs were evaluated. RESULTS: Eight of 24 (33%) CXPAs versus 41 of 300 (14%) PAs were localized in the deep lobe (P < 0.05). Forty-two percent of CXPAs versus 6 percent of PAs, respectively, were greater than 4 cm (P < 0.05). The sensitivity in detecting CXPA by fine-needle aspiration cytology (FNAC) was 47 percent. The tumor was known to be malignant preoperatively in 10 (42%) patients. Six of 24 (25%) patients with CXPA developed a tumor recurrence. The overall 5-year survival rate of CXPA was 76 percent. CONCLUSION: CXPAs are difficult to identify preoperatively. FNAC has a low accuracy and sensitivity. CXPAs versus PAs are significantly more frequently localized in the deep lobe and are significantly greater in size.
Resumo:
As the performance gap between microprocessors and memory continues to increase, main memory accesses result in long latencies which become a factor limiting system performance. Previous studies show that main memory access streams contain significant localities and SDRAM devices provide parallelism through multiple banks and channels. These locality and parallelism have not been exploited thoroughly by conventional memory controllers. In this thesis, SDRAM address mapping techniques and memory access reordering mechanisms are studied and applied to memory controller design with the goal of reducing observed main memory access latency. The proposed bit-reversal address mapping attempts to distribute main memory accesses evenly in the SDRAM address space to enable bank parallelism. As memory accesses to unique banks are interleaved, the access latencies are partially hidden and therefore reduced. With the consideration of cache conflict misses, bit-reversal address mapping is able to direct potential row conflicts to different banks, further improving the performance. The proposed burst scheduling is a novel access reordering mechanism, which creates bursts by clustering accesses directed to the same rows of the same banks. Subjected to a threshold, reads are allowed to preempt writes and qualified writes are piggybacked at the end of the bursts. A sophisticated access scheduler selects accesses based on priorities and interleaves accesses to maximize the SDRAM data bus utilization. Consequentially burst scheduling reduces row conflict rate, increasing and exploiting the available row locality. Using a revised SimpleScalar and M5 simulator, both techniques are evaluated and compared with existing academic and industrial solutions. With SPEC CPU2000 benchmarks, bit-reversal reduces the execution time by 14% on average over traditional page interleaving address mapping. Burst scheduling also achieves a 15% reduction in execution time over conventional bank in order scheduling. Working constructively together, bit-reversal and burst scheduling successfully achieve a 19% speedup across simulated benchmarks.
Resumo:
Tumors of the pineal region are uncommon, comprising approximately 0.4-1% of all intracranial tumors in adults in European and American series. Histopathologically, they are a very heterogeneous group of tumors. Of genuine pineal tumors, pineal parenchymal tumors of intermediate differentiation (PPTIDs) are the least frequently found type. In this paper, we report on the case of a patient with an unexpected and difficult-to-diagnose PPTID. A 2.2 x 2.2-cm midline mass within the posterior part of the third ventricle with consecutive obstructive hydrocephalus was found in a 44-year-old man presenting with diplopia and gait disturbances. There was no clear connection of the tumor to the pineal gland. Differential diagnosis included all intraventricular and midline tumors, therefore a biopsy was taken. Preliminary histopathological diagnosis was germinoma or primitive neuroectodermal tumor, and the tissue sample was reexamined by a referential neuropathological institute. Final diagnosis was PPTID. The tumor was then resected through a transventricular/transchoroidal approach. Histopathological examination of tumor specimen confirmed the diagnosis of a PPTID. Postoperatively, the patient received gamma-knife radiosurgery. At 1-year follow-up, there are no signs of tumor regrowth. Diagnosis of pineal parenchymal tumors in general and PPTIDs in particular can be troublesome. Their histopathological features are still being defined, as is the biological behavior of the different tumor entities. Thus, treatment options including surgery, radiation therapy, and chemotherapy remain controversial. We recommend surgical removal of PPTID, preferably in toto whenever the size of the tumor permits that kind of excision.
Resumo:
Three-dimensional flow visualization plays an essential role in many areas of science and engineering, such as aero- and hydro-dynamical systems which dominate various physical and natural phenomena. For popular methods such as the streamline visualization to be effective, they should capture the underlying flow features while facilitating user observation and understanding of the flow field in a clear manner. My research mainly focuses on the analysis and visualization of flow fields using various techniques, e.g. information-theoretic techniques and graph-based representations. Since the streamline visualization is a popular technique in flow field visualization, how to select good streamlines to capture flow patterns and how to pick good viewpoints to observe flow fields become critical. We treat streamline selection and viewpoint selection as symmetric problems and solve them simultaneously using the dual information channel [81]. To the best of my knowledge, this is the first attempt in flow visualization to combine these two selection problems in a unified approach. This work selects streamline in a view-independent manner and the selected streamlines will not change for all viewpoints. My another work [56] uses an information-theoretic approach to evaluate the importance of each streamline under various sample viewpoints and presents a solution for view-dependent streamline selection that guarantees coherent streamline update when the view changes gradually. When projecting 3D streamlines to 2D images for viewing, occlusion and clutter become inevitable. To address this challenge, we design FlowGraph [57, 58], a novel compound graph representation that organizes field line clusters and spatiotemporal regions hierarchically for occlusion-free and controllable visual exploration. We enable observation and exploration of the relationships among field line clusters, spatiotemporal regions and their interconnection in the transformed space. Most viewpoint selection methods only consider the external viewpoints outside of the flow field. This will not convey a clear observation when the flow field is clutter on the boundary side. Therefore, we propose a new way to explore flow fields by selecting several internal viewpoints around the flow features inside of the flow field and then generating a B-Spline curve path traversing these viewpoints to provide users with closeup views of the flow field for detailed observation of hidden or occluded internal flow features [54]. This work is also extended to deal with unsteady flow fields. Besides flow field visualization, some other topics relevant to visualization also attract my attention. In iGraph [31], we leverage a distributed system along with a tiled display wall to provide users with high-resolution visual analytics of big image and text collections in real time. Developing pedagogical visualization tools forms my other research focus. Since most cryptography algorithms use sophisticated mathematics, it is difficult for beginners to understand both what the algorithm does and how the algorithm does that. Therefore, we develop a set of visualization tools to provide users with an intuitive way to learn and understand these algorithms.