933 resultados para Detection of lines


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Simian rotavirus SA-11, experimentally seeded, was recovered from raw domestic sewage by a two-step concentration procedure, using filtration through a positively charged microporous filter (Zeta Plus 60 S) followed by ultracentrifugation, effecting an 8,000-fold concentration. By this method, a mean recovery of 81% ± 7.5 of the SA-11 virus, was achieved

Relevância:

100.00% 100.00%

Publicador:

Resumo:

MicroRNAs (miRNAs) are small, non-protein coding transcripts involved in many cellular and physiological mechanisms. Recently, a new class of miRNA called 'circulating miRNAs' was found in cell-free body fluids such as plasma and urine. Circulating miRNAs have been shown to be very stable, specific, and sensitive biomarkers. In this paper, we investigate whether circulating miRNAs can serve as biomarkers for erythropoiesis-stimulating agent abuse. To this end, we analyzed miRNA levels in plasma by miRNA microarrays and quantitative real-time polymerase chain reaction (PCR). Plasma samples are derived from a clinical study with healthy subjects injected with erythropoiesis-stimulating agent (C.E.R.A.). Based on microarray results, we observed a significant difference in the levels of miRNAs in plasma after C.E.R.A. injection. We demonstrated that a specific miRNA, miR-144, exhibit a high increase that lasts 27 days after C.E.R.A. stimulation. Considering the fact that miR-144 is an essential erythropoiesis agent in different organisms, these findings suggest the possibility of using miR-144 as a sensitive and informative biomarker to detect C.E.R.A. abuse. Copyright © 2011 John Wiley & Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We evaluated the titers of anti-T. gondii antibodies by various serological tests in 40 serum samples from dogs exhibiting clinical signs of infectious diseases. Indirect immunofluorescence (IgG-IFI), indirect haemagglutination (IHA and M-Toxo) and immunoenzymatic (ELISA and PA-ELISA) tests were carried out. Titers ³ 64 were considered as positive. Anti-Toxoplasma antibodies were found in 9 (22.5%), 14 (35%), 14 (35%) and 12 (30%) samples, respectively for IHA, IgG-IFI, ELISA and PA-ELISA. The results showed that 57% were negative in all tests and 43% of the dogs presented antibodies to T. gondii; from these, 20% were positive in all three tests with high titers of antibodies and 23% were positive in only one or two tests with low titers of antibodies and mainly related to the IFI and ELISA tests. We observed 5 (12.5%) and 1 (2.5%) reactive samples, respectively, by M-Toxo and IHA with or without 2-mercapthoethanol, in the attempt to detect specific IgM. We can conclude that serodiagnosis of toxoplasmosis in dog have to be based on the combination of serological tests (IFI and ELISA) and with emphasis at the determination of the titers and the classes of the specific antibodies

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In Switzerland, individuals exposed to the risk of activity intake are required to perform regular monitoring. Monitoring consists in a screening measurement and is meant to be performed using commonly available laboratory instruments. More particularly, iodine intake is measured using a surface contamination monitor. The goal of the present paper is to report the calibration method developed for thyroid screening instruments. It consists of measuring the instrument response to a known activity located in the thyroid gland of a standard neck phantom. One issue of this procedure remains that the iodine radioisotopes have a short half-life. Therefore, the adequacy and limitations to simulate the short-lived radionuclides with so-called mock radionuclides of longer half-life were also evaluated. In light of the results, it has been decided to use only the appropriate iodine sources to perform the calibration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The increase of the body's capacity to transport oxygen is a prime target for doping athletes in all endurance sports. For this pupose, blood transfusions or erythropoiesis stimulating agents (ESA), such as erythropoietin, NESP, and CERA are used. As direct detection of such manipulations is difficult, biomarkers that are connected to the haematopoietic system (haemoglobin concentration, reticulocytes) are monitored over time (Athlete Biological Passport (ABP)) and analyzed using mathematical models to identify patterns suspicious of doping. With this information, athletes can either be sanctioned directly based on their profile or targeted with conventional doping tests. Key issues for the appropriate use of the ABP are correct targeting and use of all available information (e.g. whereabouts, cross sectional population data) in a forensic manner. Future developments of the passport include the correction of all concentration-based variables for shifts in plasma volume, which might considerably increase sensitivity. New passport markers from the genomic, proteomic, and metabolomic level might add further information, but need to be validated before integration into the passport procedure. A first assessment of blood data of federations that have implemented the passport show encouraging signs of a decreased blood-doping prevalence in their athletes, which adds scientific credibility to this innovative concept in the fight against ESA- and blood doping. Copyright © 2012 John Wiley & Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Enterovirus (EV) is the most frequent cause of aseptic meningitis (AM). Lack of microbiological documentation results in unnecessary antimicrobial therapy and hospitalization. OBJECTIVES: To assess the impact of rapid EV detection in cerebrospinal fluid (CSF) by a fully-automated PCR (GeneXpert EV assay, GXEA) on the management of AM. STUDY DESIGN: Observational study in adult patients with AM. Three groups were analyzed according to EV documentation in CSF: group A=no PCR or negative PCR (n=17), group B=positive real-time PCR (n=20), and group C=positive GXEA (n=22). Clinical, laboratory and health-care costs data were compared. RESULTS: Clinical characteristics were similar in the 3 groups. Median turn-around time of EV PCR decreased from 60h (IQR (interquartile range) 44-87) in group B to 5h (IQR 4-11) in group C (p<0.0001). Median duration of antibiotics was 1 (IQR 0-6), 1 (0-1.9), and 0.5 days (single dose) in groups A, B, and C, respectively (p<0.001). Median length of hospitalization was 4 days (2.5-7.5), 2 (1-3.7), and 0.5 (0.3-0.7), respectively (p<0.001). Median hospitalization costs were $5458 (2676-6274) in group A, $2796 (2062-5726) in group B, and $921 (765-1230) in group C (p<0.0001). CONCLUSIONS: Rapid EV detection in CSF by a fully-automated PCR improves management of AM by significantly reducing antibiotic use, hospitalization length and costs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVES: This study was designed to identify macrophage-rich atherosclerotic plaque noninvasively by imaging the tissue uptake of long-circulating superparamagnetic nanoparticles with a positive contrast off-resonance imaging sequence (inversion recovery with ON-resonant water suppression [IRON]). BACKGROUND: The sudden rupture of macrophage-rich atherosclerotic plaques can trigger the formation of an occlusive thrombus in coronary vessels, resulting in acute myocardial infarction. Therefore, a noninvasive technique that can identify macrophage-rich plaques and thereby assist with risk stratification of patients with atherosclerosis would be of great potential clinical utility. METHODS: Experiments were conducted on a clinical 3-T magnetic resonance imaging (MRI) scanner in 7 heritable hyperlipidemic and 4 control rabbits. Monocrystalline iron-oxide nanoparticles (MION)-47 were administrated intravenously (2 doses of 250 mumol Fe/kg), and animals underwent serial IRON-MRI before injection of the nanoparticles and serially after 1, 3, and 6 days. RESULTS: After administration of MION-47, a striking signal enhancement was found in areas of plaque only in hyperlipidemic rabbits. The magnitude of enhancement on magnetic resonance images had a high correlation with the number of macrophages determined by histology (p < 0.001) and allowed for the detection of macrophage-rich plaque with high accuracy (area under the curve: 0.92, SE: 0.04, 95% confidence interval: 0.84 to 0.96, p < 0.001). No significant signal enhancement was measured in remote areas without plaque by histology and in control rabbits without atherosclerosis. CONCLUSIONS: Using IRON-MRI in conjunction with superparamagnetic nanoparticles is a promising approach for the noninvasive evaluation of macrophage-rich, vulnerable plaques.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In order to evaluate the predictive value of acid fast bacilii (AFB) smear for the diagnosis of Mycobacterium tuberculosis in respiratory specimens in a setting with a high prevalence of Aids and an unknown prevalence of nontuberculous mycobacteria (NTM), we retrospectively examined specimens cultured for mycobacteria between 1 September 1993 and 30 September 1994 and medical records of patients with positive culture in a General Hospital, Aids reference in Rio de Janeiro, Brazil. Seventy three per cent (1517/2077) of samples were respiratory specimens and mycobacteria were recovered from 20.6% (313/1517) of these. M. tuberculosis was identified in 94.2% (295/313) and NTM in 5.8% (18/313). The yield of positive AFB smear and of positive culture was 6.1% (93/1517) and 20.6% (313/1517), respectively. The positive predictive value (PPV) of AFB for M. tuberculosis was 98.4% in expectorated sputum and 96.4% in bronchoalveolar lavage. Forty four percent (130/295) of specimens with positive culture for M. tuberculosis and 66.7% (12/18) for NTM were from patients HIV positive. The conclusion was that in our study population, the PPV of AFB for M. tuberculosis in respiratory specimens was high and the prevalence of NTM was low despite the high prevalence of HIV positive.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ultrastructure of the membrane attack complex (MAC) of complement had been described as representing a hollow cylinder of defined dimensions that is composed of the proteins C5b, C6, C7, C8, and C9. After the characteristic cylindrical structure was identified as polymerized C9 [poly(C9)], the question arose as to the ultrastructural identity and topology of the C9-polymerizing complex C5b-8. An electron microscopic analysis of isolated MAC revealed an asymmetry of individual complexes with respect to their length. Whereas the length of one boundary (+/- SEM) was always 16 +/- 1 nm, the length of the other varied between 16 and 32 nm. In contrast, poly(C9), formed spontaneously from isolated C9, had a uniform tubule length (+/- SEM) of 16 +/- 1 nm. On examination of MAC-phospholipid vesicle complexes, an elongated structure was detected that was closely associated with the poly(C9) tubule and that extended 16-18 nm beyond the torus of the tubule and 28-30 nm above the membrane surface. The width of this structure varied depending on its two-dimensional projection in the electron microscope. By using biotinyl C5b-6 in the formation of the MAC and avidin-coated colloidal gold particles for the ultrastructural analysis, this heretofore unrecognized subunit of the MAC could be identified as the tetramolecular C5b-8 complex. Identification also was achieved by using anti-C5 Fab-coated colloidal gold particles. A similar elongated structure of 25 nm length (above the surface of the membrane) was observed on single C5b-8-vesicle complexes. It is concluded that the C5b-8 complex, which catalyzes poly(C9) formation, constitutes a structure of discrete morphology that remains as such identifiable in the fully assembled MAC, in which it is closely associated with the poly(C9) tubule.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Flow cytometry has been used as a powerful technique for studying cell surface antigen expression as well as intracellular molecules. Its capability of analyzing multiple parameters simultaneously on a single cell has allowed identification and studies of functional cell subsets within heterogeneous populations. In this respect, several techniques have been developed during the past few years to study cytokine-producing cells by flow cytometry in humans and several animal models.