997 resultados para Dependent elderly


Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: To determine whether the elimination of certain chronic diseases is capable of leading to the compression of morbidity among elderly individuals.METHODS: A population-based, cross-sectional study was carried out with official data for the city of Sao Paulo, Southeastern Brazil in 2000 and data from the SABE (Health, Wellbeing and Ageing) study. Sullivan's method was used to calculate disability-free life expectancy. Cause-deleted life tables were used to calculate the probabilities of death and disabilities with the elimination of health conditions.RESULTS: The largest gains in disability-free life expectancy, with the elimination of chronic illness, occurred in the female gender. Among individuals of a more advanced age, gains in disability-free life expectancy occurred as result of a relative compression of morbidity. Among men aged 75 years, all conditions studied, except heart disease and systemic arterial pressure, led to an absolute expansion of morbidity and, at the same time, to a relative compression of morbidity upon being eliminated.CONCLUSIONS: The elimination of chronic diseases in the elderly could lead to the compression of morbidity in elderly men and women.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Due to the growing complexity and adaptability requirements of real-time systems, which often exhibit unrestricted Quality of Service (QoS) inter-dependencies among supported services and user-imposed quality constraints, it is increasingly difficult to optimise the level of service of a dynamic task set within an useful and bounded time. This is even more difficult when intending to benefit from the full potential of an open distributed cooperating environment, where service characteristics are not known beforehand and tasks may be inter-dependent. This paper focuses on optimising a dynamic local set of inter-dependent tasks that can be executed at varying levels of QoS to achieve an efficient resource usage that is constantly adapted to the specific constraints of devices and users, nature of executing tasks and dynamically changing system conditions. Extensive simulations demonstrate that the proposed anytime algorithms are able to quickly find a good initial solution and effectively optimise the rate at which the quality of the current solution improves as the algorithms are given more time to run, with a minimum overhead when compared against their traditional versions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Due to the growing complexity and dynamism of many embedded application domains (including consumer electronics, robotics, automotive and telecommunications), it is increasingly difficult to react to load variations and adapt the system's performance in a controlled fashion within an useful and bounded time. This is particularly noticeable when intending to benefit from the full potential of an open distributed cooperating environment, where service characteristics are not known beforehand and tasks may exhibit unrestricted QoS inter-dependencies. This paper proposes a novel anytime adaptive QoS control policy in which the online search for the best set of QoS levels is combined with each user's personal preferences on their services' adaptation behaviour. Extensive simulations demonstrate that the proposed anytime algorithms are able to quickly find a good initial solution and effectively optimise the rate at which the quality of the current solution improves as the algorithms are given more time to run, with a minimum overhead when compared against their traditional versions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Portugal has an accentuated aging tendency, presenting an elderly population (individuals with more than 65 years old) of 19.2%. The average life expectancy is 79.2 years. Thus, it’s important to maintain autonomy and independency as long as possible. Functional ability concept rises from the need to evaluate the capacity to conduct daily activities in an independent way. It can be estimated with the 6-minute walk test (6MWT) and other validated test. This test is simple, reliable, valid and consists in a daily activity (walk). The goals of this study was to verify associations between functional capacity measured with two different instruments (6MWT and Composite Physical Function (CPF) scale) and between those results and characterization variables.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE To estimate the prevalence of depressive symptoms among institutionalized elderly individuals and to analyze factors associated with this condition. METHODS This was a cross-sectional study involving 462 individuals aged 60 or older, residents in long stay institutions in four Brazilian municipalities. The dependent variable was assessed using the 15-item Geriatric Depression Scale. Poisson’s regression was used to evaluate associations with co-variables. We investigated which variables were most relevant in terms of presence of depressive symptoms within the studied context through factor analysis. RESULTS Prevalence of depressive symptoms was 48.7%. The variables associated with depressive symptoms were: regular/bad/very bad self-rated health; comorbidities; hospitalizations; and lack of friends in the institution. Five components accounted for 49.2% of total variance of the sample: functioning, social support, sensory deficiency, institutionalization and health conditions. In the factor analysis, functionality and social support were the components which explained a large part of observed variance. CONCLUSIONS A high prevalence of depressive symptoms, with significant variation in distribution, was observed. Such results emphasize the importance of health conditions and functioning for institutionalized older individuals developing depression. They also point to the importance of providing opportunities for interaction among institutionalized individuals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Locomotor tasks characterization plays an important role in trying to improve the quality of life of a growing elderly population. This paper focuses on this matter by trying to characterize the locomotion of two population groups with different functional fitness levels (high or low) while executing three different tasks-gait, stair ascent and stair descent. Features were extracted from gait data, and feature selection methods were used in order to get the set of features that allow differentiation between functional fitness level. Unsupervised learning was used to validate the sets obtained and, ultimately, indicated that it is possible to distinguish the two population groups. The sets of best discriminate features for each task are identified and thoroughly analysed. Copyright © 2014 SCITEPRESS - Science and Technology Publications. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aspergillus fumigatus (Af) and Pseudomonas aeruginosa (Pa) are leading fungal and bacterial pathogens, respectively, in many clinical situations. Relevant to this, their interface and co-existence has been studied. In some experiments in vitro, Pa products have been defined that are inhibitory to Af. In some clinical situations, both can be biofilm producers, and biofilm could alter their physiology and affect their interaction. That may be most relevant to airways in cystic fibrosis (CF), where both are often prominent residents. We have studied clinical Pa isolates from several sources for their effects on Af, including testing involving their biofilms. We show that the described inhibition of Af is related to the source and phenotype of the Pa isolate. Pa cells inhibited the growth and formation of Af biofilm from conidia, with CF isolates more inhibitory than non-CF isolates, and non-mucoid CF isolates most inhibitory. Inhibition did not require live Pa contact, as culture filtrates were also inhibitory, and again non-mucoid>mucoid CF>non-CF. Preformed Af biofilm was more resistant to Pa, and inhibition that occurred could be reproduced with filtrates. Inhibition of Af biofilm appears also dependent on bacterial growth conditions; filtrates from Pa grown as biofilm were more inhibitory than from Pa grown planktonically. The differences in Pa shown from these different sources are consistent with the extensive evolutionary Pa changes that have been described in association with chronic residence in CF airways, and may reflect adaptive changes to life in a polymicrobial environment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

According to numerous studies, airborne nanoparticles have a potential to produce serious adverse human health effects when deposited into the respiratory tract. The most important parts of the lung are the alveolar regions with their enormous surface areas and potential to transfer nanoparticles into the blood stream. These effects may be potentiated in case of the elderly, since this population is more susceptible to air pollutants in general and more to nanoparticles than larger particles. The main goal of this investigation was to determine the exposure of institutionalized elders to nanoparticles using Nanoparticle Surface Area Monitor (NSAM) equipment to calculate the deposited surface area (DSA) of nanoparticles into elderly lungs. In total, 193 institutionalized individuals over 65 yr of age were examined in four elderly care centers (ECC). The occupancy daily pattern was achieved by applying a questionnaire, and it was concluded that these subjects spent most of their time indoors, including the bedroom and living room, the indoor microenvironments with higher prevalence of elderly occupancy. The deposited surface area ranged from 10 to 46 mu m(2)/cm(3). The living rooms presented significantly higher levels compared with bedrooms. Comparing PM10 concentrations with nanoparticles deposited surface area in elderly lungs, it is conceivable that living rooms presented the highest concentration of PM10 and were similar to the highest average DSA. The temporal distribution of DSA was also assessed. While data showed a quantitative fluctuation in values in bedrooms, high peaks were detected in living rooms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Complex medication regimens may adversely affect compliance and treatment outcomes. Complexity can be assessed with the medication regimen complexity index (MRCI), which has proved to be a valid, reliable tool, with potential uses in both practice and research. Objective: To use the MRCI to assess medication regimen complexity in institutionalized elderly people. Setting: Five nursing homes in mainland Portugal. Methods: A descriptive, cross-sectional study of institutionalized elderly people (n = 415) was performed from March to June 2009, including all inpatients aged 65 and over taking at least one medication per day. Main outcome measure: Medication regimen complexity index. Results: The mean age of the sample was 83.9 years (±6.6 years), and 60.2 % were women. The elderly patients were taking a large number of drugs, with 76.6 % taking more than five medications per day. The average medication regimen complexity was 18.2 (±SD = 9.6), and was higher in the females (p < 0.001). The most decisive factors contributing to the complexity were the number of drugs and dosage frequency. In regimens with the same number of medications, schedule was the most relevant factor in the final score (r = 0.922), followed by pharmaceutical forms (r = 0.768) and additional instructions (r = 0.742). Conclusion: Medication regimen complexity proved to be high. There is certainly potential for the pharmacist's intervention to reduce it as part as the medication review routine in all the patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The iterative simulation of the Brownian bridge is well known. In this article, we present a vectorial simulation alternative based on Gaussian processes for machine learning regression that is suitable for interpreted programming languages implementations. We extend the vectorial simulation of path-dependent trajectories to other Gaussian processes, namely, sequences of Brownian bridges, geometric Brownian motion, fractional Brownian motion, and Ornstein-Ulenbeck mean reversion process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Resumo: A decisão da terapêutica hormonal no tratamento do cancro da mama baseiase na determinação do receptor de estrogénio alfa por imunohistoquímica (IHC). Contudo, a presença deste receptor não prediz a resposta em todas as situações, em parte devido a limitações do método IHC. Investigámos se a expressão dos genes ESR1 e ESR2, bem como a metilação dos respectivos promotores, pode estar relacionada com a evolução desfavorável de uma proporção de doentes tratados com tamoxifeno assim como com a perda dos receptores de estrogénio alfa (ERα) e beta (ERß). Amostras de 211 doentes com cancro da mama diagnosticado entre 1988 e 2004, fixadas em formalina e preservadas em parafina, foram utilizadas para a determinação por IHC da presença dos receptores ERα e ERß. O mRNA total do gene ESR1 e os níveis específicos do transcrito derivado do promotor C (ESR1_C), bem como dos transcritos ESR2_ß1, ESR2_ß2/cx, and ESR2_ß5 foram avaliados por Real-time PCR. Os promotores A e C do gene ESR1 e os promotores 0K e 0N do gene ESR2 foram investigados por análise de metilação dos dinucleotidos CpG usando bisulfite-PCR para análise com enzimas de restrição, ou para methylation specific PCR. Atendendo aos resultados promissores relacionados com a metilação do promotor do gene ESR1, complementamos o estudo com um método quantitativo por matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) suportado pelo software Epityper para a medição da metilação nos promotores A e C. Fez-se a avaliação da estabilidade do mRNA nas linhas celulares de cancro da mama MCF-7 e MDA-MB-231 tratadas com actinomicina D. Baixos níveis do transcrito ESR1_C associaram-se a uma melhor sobrevivência global (p = 0.017). Níveis elevados do transcrito ESR1_C associaram-se a uma resposta inferior ao tamoxifeno (HR = 2.48; CI 95% 1.24-4.99), um efeito mais pronunciado em doentes com tumores de fenótipo ERα/PgR duplamente positivo (HR = 3.41; CI 95% 1.45-8.04). A isoforma ESR1_C mostrou ter uma semi-vida prolongada, bem como uma estrutura secundária da região 5’UTR muito mais relaxada em comparação com a isoforma ESR1_A. A análise por Western-blot mostrou que ao nível da 21 proteína, a selectividade de promotores é indistinguivel. Não se detectou qualquer correlação entre os níveis das isoformas do gene ESR2 ou entre a metilação dos promotores do gene ESR2, e a detecção da proteína ERß. A metilação do promotor C do gene ESR1, e não do promotor A, foi responsável pela perda do receptor ERα. Estes resultados sugerem que os níveis do transcrito ESR1_C sejam usados como um novo potencial marcador para o prognóstico e predição de resposta ao tratamento com tamoxifeno em doentes com cancro da mama. Abstract: The decision of endocrine breast cancer treatment relies on ERα IHC-based assessment. However, ER positivity does not predict response in all cases in part due to IHC methodological limitations. We investigated whether ESR1 and ESR2 gene expression and respective promoter methylation may be related to non-favorable outcome of a proportion of tamoxifen treated patients as well as to ERα and ERß loss. Formalin-fixed paraffin-embedded breast cancer samples from 211 patients diagnosed between 1988 and 2004 were submitted to IHC-based ERα and ERß protein determination. ESR1 whole mRNA and promoter C specific transcript levels, as well as ESR2_ß1, ESR2_ß2/cx, and ESR2_ß5 transcripts were assessed by real-time PCR. ESR1 promoters A and C, and ESR2 promoters 0N and 0K were investigated by CpG methylation analysis using bisulfite-PCR for restriction analysis, or methylation specific PCR. Due to the promising results related to ESR1 promoter methylation, we have used a quantification method by matrixassisted laser desorption/ionization time-of-flight mass spectrometry (MALDITOF MS) together with Epityper software to measure methylation at promoters A and C. mRNA stability was assessed in actinomycin D treated MCF-7 and MDA-MB-231 cells. ERα protein was quantified using transiently transfected breast cancer cells. Low ESR1_C transcript levels were associated with better overall survival (p = 0.017). High levels of ESR1_C transcript were associated with non-favorable response in tamoxifen treated patients (HR = 2.48; CI 95% 1.24-4.99), an effect that was more pronounced in patients with ERα/PgR double-positive tumors (HR = 3.41; CI 95% 1.45-8.04). The ESR1_C isoform had a prolonged mRNA half-life and a more relaxed 5’UTR structure compared to ESR1_A isoform. Western-blot analysis showed that at protein level, the promoter selectivity is undistinguishable. There was no correlation between levels of ESR2 isoforms or ESR2 promoter methylation and ERß protein staining. ESR1 promoter C CpG methylation and not promoter A was responsible for ERα loss. We propose ESR1_C levels as a putative novel marker for breast cancer prognosis and prediction of tamoxifen response.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development of high spatial resolution airborne and spaceborne sensors has improved the capability of ground-based data collection in the fields of agriculture, geography, geology, mineral identification, detection [2, 3], and classification [4–8]. The signal read by the sensor from a given spatial element of resolution and at a given spectral band is a mixing of components originated by the constituent substances, termed endmembers, located at that element of resolution. This chapter addresses hyperspectral unmixing, which is the decomposition of the pixel spectra into a collection of constituent spectra, or spectral signatures, and their corresponding fractional abundances indicating the proportion of each endmember present in the pixel [9, 10]. Depending on the mixing scales at each pixel, the observed mixture is either linear or nonlinear [11, 12]. The linear mixing model holds when the mixing scale is macroscopic [13]. The nonlinear model holds when the mixing scale is microscopic (i.e., intimate mixtures) [14, 15]. The linear model assumes negligible interaction among distinct endmembers [16, 17]. The nonlinear model assumes that incident solar radiation is scattered by the scene through multiple bounces involving several endmembers [18]. Under the linear mixing model and assuming that the number of endmembers and their spectral signatures are known, hyperspectral unmixing is a linear problem, which can be addressed, for example, under the maximum likelihood setup [19], the constrained least-squares approach [20], the spectral signature matching [21], the spectral angle mapper [22], and the subspace projection methods [20, 23, 24]. Orthogonal subspace projection [23] reduces the data dimensionality, suppresses undesired spectral signatures, and detects the presence of a spectral signature of interest. The basic concept is to project each pixel onto a subspace that is orthogonal to the undesired signatures. As shown in Settle [19], the orthogonal subspace projection technique is equivalent to the maximum likelihood estimator. This projection technique was extended by three unconstrained least-squares approaches [24] (signature space orthogonal projection, oblique subspace projection, target signature space orthogonal projection). Other works using maximum a posteriori probability (MAP) framework [25] and projection pursuit [26, 27] have also been applied to hyperspectral data. In most cases the number of endmembers and their signatures are not known. Independent component analysis (ICA) is an unsupervised source separation process that has been applied with success to blind source separation, to feature extraction, and to unsupervised recognition [28, 29]. ICA consists in finding a linear decomposition of observed data yielding statistically independent components. Given that hyperspectral data are, in given circumstances, linear mixtures, ICA comes to mind as a possible tool to unmix this class of data. In fact, the application of ICA to hyperspectral data has been proposed in reference 30, where endmember signatures are treated as sources and the mixing matrix is composed by the abundance fractions, and in references 9, 25, and 31–38, where sources are the abundance fractions of each endmember. In the first approach, we face two problems: (1) The number of samples are limited to the number of channels and (2) the process of pixel selection, playing the role of mixed sources, is not straightforward. In the second approach, ICA is based on the assumption of mutually independent sources, which is not the case of hyperspectral data, since the sum of the abundance fractions is constant, implying dependence among abundances. This dependence compromises ICA applicability to hyperspectral images. In addition, hyperspectral data are immersed in noise, which degrades the ICA performance. IFA [39] was introduced as a method for recovering independent hidden sources from their observed noisy mixtures. IFA implements two steps. First, source densities and noise covariance are estimated from the observed data by maximum likelihood. Second, sources are reconstructed by an optimal nonlinear estimator. Although IFA is a well-suited technique to unmix independent sources under noisy observations, the dependence among abundance fractions in hyperspectral imagery compromises, as in the ICA case, the IFA performance. Considering the linear mixing model, hyperspectral observations are in a simplex whose vertices correspond to the endmembers. Several approaches [40–43] have exploited this geometric feature of hyperspectral mixtures [42]. Minimum volume transform (MVT) algorithm [43] determines the simplex of minimum volume containing the data. The MVT-type approaches are complex from the computational point of view. Usually, these algorithms first find the convex hull defined by the observed data and then fit a minimum volume simplex to it. Aiming at a lower computational complexity, some algorithms such as the vertex component analysis (VCA) [44], the pixel purity index (PPI) [42], and the N-FINDR [45] still find the minimum volume simplex containing the data cloud, but they assume the presence in the data of at least one pure pixel of each endmember. This is a strong requisite that may not hold in some data sets. In any case, these algorithms find the set of most pure pixels in the data. Hyperspectral sensors collects spatial images over many narrow contiguous bands, yielding large amounts of data. For this reason, very often, the processing of hyperspectral data, included unmixing, is preceded by a dimensionality reduction step to reduce computational complexity and to improve the signal-to-noise ratio (SNR). Principal component analysis (PCA) [46], maximum noise fraction (MNF) [47], and singular value decomposition (SVD) [48] are three well-known projection techniques widely used in remote sensing in general and in unmixing in particular. The newly introduced method [49] exploits the structure of hyperspectral mixtures, namely the fact that spectral vectors are nonnegative. The computational complexity associated with these techniques is an obstacle to real-time implementations. To overcome this problem, band selection [50] and non-statistical [51] algorithms have been introduced. This chapter addresses hyperspectral data source dependence and its impact on ICA and IFA performances. The study consider simulated and real data and is based on mutual information minimization. Hyperspectral observations are described by a generative model. This model takes into account the degradation mechanisms normally found in hyperspectral applications—namely, signature variability [52–54], abundance constraints, topography modulation, and system noise. The computation of mutual information is based on fitting mixtures of Gaussians (MOG) to data. The MOG parameters (number of components, means, covariances, and weights) are inferred using the minimum description length (MDL) based algorithm [55]. We study the behavior of the mutual information as a function of the unmixing matrix. The conclusion is that the unmixing matrix minimizing the mutual information might be very far from the true one. Nevertheless, some abundance fractions might be well separated, mainly in the presence of strong signature variability, a large number of endmembers, and high SNR. We end this chapter by sketching a new methodology to blindly unmix hyperspectral data, where abundance fractions are modeled as a mixture of Dirichlet sources. This model enforces positivity and constant sum sources (full additivity) constraints. The mixing matrix is inferred by an expectation-maximization (EM)-type algorithm. This approach is in the vein of references 39 and 56, replacing independent sources represented by MOG with mixture of Dirichlet sources. Compared with the geometric-based approaches, the advantage of this model is that there is no need to have pure pixels in the observations. The chapter is organized as follows. Section 6.2 presents a spectral radiance model and formulates the spectral unmixing as a linear problem accounting for abundance constraints, signature variability, topography modulation, and system noise. Section 6.3 presents a brief resume of ICA and IFA algorithms. Section 6.4 illustrates the performance of IFA and of some well-known ICA algorithms with experimental data. Section 6.5 studies the ICA and IFA limitations in unmixing hyperspectral data. Section 6.6 presents results of ICA based on real data. Section 6.7 describes the new blind unmixing scheme and some illustrative examples. Section 6.8 concludes with some remarks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper introduces a new method to blindly unmix hyperspectral data, termed dependent component analysis (DECA). This method decomposes a hyperspectral images into a collection of reflectance (or radiance) spectra of the materials present in the scene (endmember signatures) and the corresponding abundance fractions at each pixel. DECA assumes that each pixel is a linear mixture of the endmembers signatures weighted by the correspondent abundance fractions. These abudances are modeled as mixtures of Dirichlet densities, thus enforcing the constraints on abundance fractions imposed by the acquisition process, namely non-negativity and constant sum. The mixing matrix is inferred by a generalized expectation-maximization (GEM) type algorithm. This method overcomes the limitations of unmixing methods based on Independent Component Analysis (ICA) and on geometrical based approaches. The effectiveness of the proposed method is illustrated using simulated data based on U.S.G.S. laboratory spectra and real hyperspectral data collected by the AVIRIS sensor over Cuprite, Nevada.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of the colour group on the morbidity due to Schistosoma mansoni was examined in two endemic areas situated in the State of Minas Gerais, Brazil. Of the 2773 eligible inhabitants, 1971 (71.1%) participated in the study: 545 (27.6%) were classified as white, 719 (36.5%) as intermediate and 707 (35.9%) as black. For each colour group, signs and symptoms of individuals who eliminated S.mansoni eggs (cases) were compared to those who did not present eggs in the faeces (controls). The odds ratios were adjusted by age, gender, previous treatment for schistosomiasis, endemic area and quality of the household. There was no evidence of a modifier effect of colour on diarrhea, bloody faeces or abdominal pain. A modifier effect of colour on hepatomegaly was evident among those heaviest infected (> 400 epg): the adjusted odds ratios for palpable liver at the middle clavicular and the middle sternal lines were smaller among blacks (5.4 and 6.5, respectively) and higher among whites (10.6 and 12.9) and intermediates (10.4 and 10.1, respectively). These results point out the existence of some degree of protection against hepatomegaly among blacks heaviest infected in the studied areas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Artigo científico disponível actualmente em Early View (Online Version of Record published before inclusion in an issue)