911 resultados para Degrees of freedom (mechanics)
Resumo:
The precipitation of bovine serum albumin (BSA), lysozyme (LYS) and alfalfa leaf protein (ALF) by two large- and two medium-sized condensed tannin (CT) fractions of similar flavan-3-ol subunit composition is described. CT fractions isolated from white clover flowers and big trefoil leaves exhibited high purity profiles by 1D/2D NMR and purities >90% (determined by thiolysis). At pH 6.5, large CTs with a mean degree of polymerization (mDP) of ~18 exhibited similar protein precipitation behaviors and were significantly more effective than medium CTs (mDP ~9). Medium CTs exhibited similar capacities to precipitate ALF or BSA, but showed small but significant differences in their capacity to precipitate LYS. All CTs precipitated ALF more effectively than BSA or LYS. Aggregation of CT-protein complexes likely aided precipitation of ALF and BSA, but not LYS. This study, one of the first to use CTs of confirmed high purity, demonstrates that mDP of CTs influences protein precipitation efficacy.
Resumo:
4-Dimensional Variational Data Assimilation (4DVAR) assimilates observations through the minimisation of a least-squares objective function, which is constrained by the model flow. We refer to 4DVAR as strong-constraint 4DVAR (sc4DVAR) in this thesis as it assumes the model is perfect. Relaxing this assumption gives rise to weak-constraint 4DVAR (wc4DVAR), leading to a different minimisation problem with more degrees of freedom. We consider two wc4DVAR formulations in this thesis, the model error formulation and state estimation formulation. The 4DVAR objective function is traditionally solved using gradient-based iterative methods. The principle method used in Numerical Weather Prediction today is the Gauss-Newton approach. This method introduces a linearised `inner-loop' objective function, which upon convergence, updates the solution of the non-linear `outer-loop' objective function. This requires many evaluations of the objective function and its gradient, which emphasises the importance of the Hessian. The eigenvalues and eigenvectors of the Hessian provide insight into the degree of convexity of the objective function, while also indicating the difficulty one may encounter while iterative solving 4DVAR. The condition number of the Hessian is an appropriate measure for the sensitivity of the problem to input data. The condition number can also indicate the rate of convergence and solution accuracy of the minimisation algorithm. This thesis investigates the sensitivity of the solution process minimising both wc4DVAR objective functions to the internal assimilation parameters composing the problem. We gain insight into these sensitivities by bounding the condition number of the Hessians of both objective functions. We also precondition the model error objective function and show improved convergence. We show that both formulations' sensitivities are related to error variance balance, assimilation window length and correlation length-scales using the bounds. We further demonstrate this through numerical experiments on the condition number and data assimilation experiments using linear and non-linear chaotic toy models.
Resumo:
Data from 58 strong-lensing events surveyed by the Sloan Lens ACS Survey are used to estimate the projected galaxy mass inside their Einstein radii by two independent methods: stellar dynamics and strong gravitational lensing. We perform a joint analysis of these two estimates inside models with up to three degrees of freedom with respect to the lens density profile, stellar velocity anisotropy, and line-of-sight (LOS) external convergence, which incorporates the effect of the large-scale structure on strong lensing. A Bayesian analysis is employed to estimate the model parameters, evaluate their significance, and compare models. We find that the data favor Jaffe`s light profile over Hernquist`s, but that any particular choice between these two does not change the qualitative conclusions with respect to the features of the system that we investigate. The density profile is compatible with an isothermal, being sightly steeper and having an uncertainty in the logarithmic slope of the order of 5% in models that take into account a prior ignorance on anisotropy and external convergence. We identify a considerable degeneracy between the density profile slope and the anisotropy parameter, which largely increases the uncertainties in the estimates of these parameters, but we encounter no evidence in favor of an anisotropic velocity distribution on average for the whole sample. An LOS external convergence following a prior probability distribution given by cosmology has a small effect on the estimation of the lens density profile, but can increase the dispersion of its value by nearly 40%.
Resumo:
Scavenger or Fc gamma receptors are important for capture and clearance of modified LDL particles by monocytes/macrophages. Uptake via scavenger receptors is not regulated by intracellular levels of cholesterol and in consequence, macrophages develop into foam cells in the arterial intima. The levels of scavenger receptor CD36 are increased in atherosclerotic lesions and there is evidence that some components of oxLDL auto-regulate the expression of this receptor. Fc gamma receptor expression is increased in cardiovascular diseases but it is not known weather their expression is regulated by oxLDL. The biological properties of oxLDLs vary depending on the degree of oxidation. In the present study we investigated the effect of LDL particles showing extensive or low oxidation (HoxLDL and LoxLDL) on the expression of CD36 and Fc gamma RII in a human monocytic cell line (THP-1), differentiated or not to macrophage, and the involvement of PPAR gamma. It was found that both forms of oxLDL are able to increase the expression of CD36 and Fc gamma RII and that this effect is dependent on the degree of oxidation and of the stage of cell differentiation ( monocyte or macrophage). We also showed that the increased expression of Fc gamma RII is dependent on PPAR. whereas that of the CD36 is independent of PPAR gamma. Copyright (c) 2008 S. Karger AG, Basel
Resumo:
We consider incompressible Stokes flow with an internal interface at which the pressure is discontinuous, as happens for example in problems involving surface tension. We assume that the mesh does not follow the interface, which makes classical interpolation spaces to yield suboptimal convergence rates (typically, the interpolation error in the L(2)(Omega)-norm is of order h(1/2)). We propose a modification of the P(1)-conforming space that accommodates discontinuities at the interface without introducing additional degrees of freedom or modifying the sparsity pattern of the linear system. The unknowns are the pressure values at the vertices of the mesh and the basis functions are computed locally at each element, so that the implementation of the proposed space into existing codes is straightforward. With this modification, numerical tests show that the interpolation order improves to O(h(3/2)). The new pressure space is implemented for the stable P(1)(+)/P(1) mini-element discretization, and for the stabilized equal-order P(1)/P(1) discretization. Assessment is carried out for Poiseuille flow with a forcing surface and for a static bubble. In all cases the proposed pressure space leads to improved convergence orders and to more accurate results than the standard P(1) space. In addition, two Navier-Stokes simulations with moving interfaces (Rayleigh-Taylor instability and merging bubbles) are reported to show that the proposed space is robust enough to carry out realistic simulations. (c) 2009 Elsevier B.V. All rights reserved.
Resumo:
Statistical properties of a two-dimensional ideal dispersion of polydisperse micelles are derived by analyzing the convergence properties of a sum rule set by mass conservation. Internal micellar degrees of freedom are accounted for by a microscopic model describing small displacements of the constituting amphiphiles with respect to their equilibrium positions. The transfer matrix (TM) method is employed to compute internal micelle partition function. We show that the conditions under which the sum rule is saturated by the largest eigenvalue of the TM determine the value of amphiphile concentration above which the dispersion becomes highly polydisperse and micelle sizes approach a Schultz distribution. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Raman activities and degrees of depolarization are reported for 14 complexes involving methanol, ethanol and water using the MP2/aug-cc-pVDZ model. For ethanol both trans and gauche isomers are considered. The red-shifts of the OH stretching and the blue shifts of the bending tau(CO-OH) mode were analyzed for the proton-donor molecules upon hydrogen bond. The shift of the nu(CO) stretching mode of the alcohol molecules are also analyzed and found to be specific giving characterization of the amphoteric relation, being positive for the proton-acceptor and negative for the proton-donor molecule. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
The model of dynamical noncommutativity is proposed. The system consists of two interrelated parts. The first of them describes the physical degrees of freedom with the coordinates q(1) and q(2), and the second corresponds to the noncommutativity eta which has a proper dynamics. After quantization, the commutator of two physical coordinates is proportional to the function of eta. The interesting feature of our model is the dependence of nonlocality on the energy of the system. The more the energy, the more the nonlocality. The leading contribution is due to the mode of noncommutativity; however, the physical degrees of freedom also contribute in nonlocality in higher orders in theta .
Resumo:
Relativistic heavy ion collisions are the ideal experimental tool to explore the QCD phase diagram. Several results show that a very hot medium with a high energy density and partonic degrees of freedom is formed in these collisions, creating a new state of matter. Measurements of strange hadrons can bring important information about the bulk properties of such matter. The elliptic flow of strange hadrons such as phi, K(S)(0), Lambda, Xi and Omega shows that collectivity is developed at partonic level and at intermediate p(T) the quark coalescence is the dominant mechanism of hadronization. The nuclear modification factor is an another indicator of the presence of a very dense medium. The comparison between measurements of Au+Au and d+Au collisions, where only cold nuclear matter effects are expected, can shed more light on the bulk properties. In these proceedings, recent results from the STAR experiment on bulk matter properties are presented.
Resumo:
Recent investigations of various quantum-gravity theories have revealed a variety of possible mechanisms that lead to Lorentz violation. One of the more elegant of these mechanisms is known as Spontaneous Lorentz Symmetry Breaking (SLSB), where a vector or tensor field acquires a nonzero vacuum expectation value. As a consequence of this symmetry breaking, massless Nambu-Goldstone modes appear with properties similar to the photon in Electromagnetism. This thesis considers the most general class of vector field theories that exhibit spontaneous Lorentz violation-known as bumblebee models-and examines their candidacy as potential alternative explanations of E&M, offering the possibility that Einstein-Maxwell theory could emerge as a result of SLSB rather than of local U(1) gauge invariance. With this aim we employ Dirac's Hamiltonian Constraint Analysis procedure to examine the constraint structures and degrees of freedom inherent in three candidate bumblebee models, each with a different potential function, and compare these results to those of Electromagnetism. We find that none of these models share similar constraint structures to that of E&M, and that the number of degrees of freedom for each model exceeds that of Electromagnetism by at least two, pointing to the potential existence of massive modes or propagating ghost modes in the bumblebee theories.
Resumo:
Parent, L. E., Natale, W. and Ziadi, N. 2009. Compositional nutrient diagnosis of corn using the Mahalanobis distance as nutrient imbalance index. Can. J. Soil Sci. 89: 383-390. Compositional nutrient diagnosis (CND) provides a plant nutrient imbalance index (CND - r(2)) with assumed chi(2) distribution. The Mahalanobis distance D(2), which detects outliers in compositional data sets, also has a chi(2) distribution. The objective of this paper was to compare D(2) and CND - r(2) nutrient imbalance indexes in corn (Zea mays L.). We measured grain yield as well as N, P, K, Ca, Mg, Cu, Fe, Mn, and Zn concentrations in the ear leaf at silk stage for 210 calibration sites in the St. Lawrence Lowlands [2300-2700 corn thermal units (CTU)] as well as 30 phosphorus (2300-2700 CTU; 10 sites) and 10 nitrogen (1900-2100 CTU; one site) replicated fertilizer treatments for validation. We derived CND norms as mean, standard deviation, and the inverse covariance matrix of centred log ratios (clr) for high yielding specimens (>= 9.0 Mg grain ha(-1) at 150 g H(2)O kg(-1) moisture content) in the 2300-2700 CTU zone. Using chi(2) = 17 (P < 0.05) with nine degrees of freedom (i.e., nine nutrients) as a rejection criterion for outliers and a yield threshold of 8.6 Mg ha(-1) after Cate-Nelson partitioning between low- and high-yielders in the P validation data set, D(2) misclassified two specimens compared with nine for CND -r(2). The D(2) classification was not significantly different from a chi(2) classification (P > 0.05), but the CND - r(2) classification differed significantly from chi(2) or D(2) (P < 0.001). A threshold value for nutrient imbalance could thus be derived probabilistically for conducting D(2) diagnosis, while the CND - r(2) nutrient imbalance threshold must be calibrated using fertilizer trials. In the proposed CND - D(2) procedure, D(2) is first computed to classify the specimen as possible outlier. Thereafter, nutrient indices are ranked in their order of limitation. The D(2) norms appeared less effective in the 1900-2100 CTU zone.
Resumo:
Objectives: We have analyzed the peripheral insulin and glucose sensitivity in vivo, and islet function ex vivo in rats with different degrees of insulin resistance induced by dexamethasone (DEX).Methods: Dexamethasone, in the concentrations of 0.1 (DEX 0.1), 0.5 (DEX 0.5), and 1.0 mg/kg body weight (DEX 1.0) was administered daily, intraperitoneally, to adult Wistar rats for 5 days, whereas controls received saline.Results: Dexamethasone treatment induced peripheral insulin resistance in a dose-dependent manner. At the end of the treatment, only DEX 1.0 rats showed significant increase of postabsorptive blood glucose and serum triglycerides, and nonesterified fatty acids levels. Incubation of pancreatic islets in increasing glucose concentrations (2.8-22 mM) led to an augmented insulin secretion in all DEX-treated rats. Leucine, carbachol, and high KCl concentrations induced the insulin release in DEX 0.5 and DEX 1.0, whereas arginine augmented secretion in all DEX-treated groups.Conclusions: We demonstrate that in DEX 0.5 and, especially in DEX 0.1 groups, but not in DEX 1.0, the adaptations that occurred in the endocrine pancreas are able to counteract metabolic disorders (glucose intolerance and dyslipidemia). These animal models seem to be interesting approaches for the study of degrees of subjacent effects that may mediate type 2 diabetes (DEX 1.0) and islet function alterations, without collateral effects (DEX 0.1 and DEX 0.5).
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
In this work, are discussed two formulations of the boundary element method - BEM to perform linear bending analysis of plates reinforced by beams. Both formulations are based on the Kirchhoffs hypothesis and they are obtained from the reciprocity theorem applied to zoned plates, where each sub-region defines a beam or a stab. In the first model the problem values are defined along the interfaces and the external boundary. Then, in order to reduce the number of degrees of freedom kinematics hypothesis are assumed along the beam cross section, leading to a second formulation where the collocation points are defined along the beam skeleton, instead of being placed on interfaces. on these formulations no approximation of the generalized forces along the interface is required. Moreover, compatibility and equilibrium conditions along the interface are automatically imposed by the integral equation. Thus, these formulations require less approximation and the total number of the degrees of freedom is reduced. In the numerical examples are discussed the differences between these two BEM formulations, comparing as well the results to a well-known finite element code.