995 resultados para Debye-Screening Length
Resumo:
The cylindrical Langmuir probe under orbital-limited conditions was used to determine the charge density in a low-density collisional plasma. The Langmuir's theory was applied to both electron and ion saturation currents in their respective accelerating regions. Present study indicates that the length of the probe significantly affects the probe characteristics. A probe of suitable length under orbital-limited conditions may be useful under the experimental conditions where the radius of the probe is much smaller than the Debye lengt.
Resumo:
A series of anion-deficient pyrochlore oxides of the formula A2MoTiO7−x (xless-than-or-equals, slant0.5), where Atriple bond; length as m-dashSm, Gd, Tb, Dy, Ho, Er, Lu and Y, has been prepared by reduction of A2MoTiO8 scheelites. The scheelite-to-pyrochlore conversion is reversible, indicating that the reaction is likely to be topochemical. The oxidation states of molybdenum and titanium are most probably Mo(III) and Ti(IV) for the limiting composition of the pyrochlores A2MoTiO6.5. The new pyrochlores are non-metallic and paramagnetic as expected.
Resumo:
The aim of this study was to examine the applicability of the Phonological Mean Length of Utterance (pMLU) method to the data of children acquiring Finnish, for both typically developing children and children with a Specific Language Impairment (SLI). Study I examined typically developing children at the end of the one-word stage (N=17, mean age 1;8), and Study II analysed children s (N=5) productions in a follow-up study with four assessment points (ages 2;0, 2;6, 3;0, 3;6). Study III was carried out in the form of a review article that examined recent research on the phonological development of children acquiring Finnish and compared the results with general trends and cross-linguistic findings in phonological development. Study IV included children with SLI (N=4, mean age 4;10) and age-matched peers. The analyses in Studies I, II and IV were made using the quantitative pMLU method. In the pMLU method, pMLU values are counted for both the words that the children targeted (so-called target words) and the words produced by the children. When the child s average pMLU value was divided with the average target word pMLU value, it is possible to examine that child s accuracy in producing the words with the Whole-Word Proximity (PWP) value. In addition, the number of entirely correctly produced words is counted to obtain the Whole-Word Correctness (PWC) value. Qualitative analyses were carried out in order to examine how the children s phoneme inventories and deficiencies in phonotactics would explain the observed pMLU, PWP and PWC values. The results showed that the pMLU values for children acquiring Finnish were relatively high already at the end of the one-word stage (Study I). The values were found to reflect the characteristics of the ambient language. Typological features that lead to cross-linguistic differences in pMLU values were also observed in the review article (Study III), which noted that in the course of phonological acquisition there are a large number of language-specific phenomena and processes. Study II indicated that overall the children s phonological development during the follow-up period was reflected in the pMLU, PWP and PWC values, although the method showed limitations in detecting qualitative differences between the children. Correct vowels were not scored in the pMLU counts, which led to some misleadingly high pMLU and PWP results: vowel errors were only reflected in the PWC values. Typically developing children in Study II reached the highest possible pMLU results already around age 3;6. At the same time, the differences between the children with SLI and age-matched peers in the pMLU values were very prominent (Study IV). The values for the children with SLI were similar to the ones reported for two-year-old children. Qualitative analyses revealed that the phonologies of the children with SLI largely resembled the ones of younger, typically developing children. However, unusual errors were also witnessed (e.g., vowel errors, omissions of word-initial stops, consonants added to the initial position in words beginning with a vowel). This dissertation provides an application of a new tool for quantitative phonological assessment and analysis in children acquiring Finnish. The preliminary results suggest that, with some modifications, the pMLU method can be used to assess children s phonological development and that it has some advantages compared to the earlier, segment-oriented approaches. Qualitative analyses complemented the pMLU s observations on the children s phonologies. More research is needed in order to verify the levels of the pMLU, PWP and PWC values in children acquiring Finnish.
Resumo:
Many previous studies regarding the estimation of mechanical properties of single walled carbon nanotubes (SWCNTs) report that, the modulus of SWCNTs is chirality, length and diameter dependent. Here, this dependence is quantitatively described in terms of high accuracy curve fit equations. These equations allow us to estimate the modulus of long SWCNTs (lengths of about 100-120 nm) if the value at the prescribed low lengths (lengths of about 5-10 nm) is known. This is supposed to save huge computational time and expense. Also, based on the observed length dependent behavior of SWCNT initial modulus, we predict that, SWCNT mechanical properties such as Young's modulus, secant modulus, maximum tensile strength, failure strength, maximum tensile strain and failure strain might also exhibit the length dependent behavior along with chirality and length dependence. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
In this letter, a closed-form analytical model for temperature-dependent longitudinal diffusive lattice thermal conductivity (kappa) of a metallic single-walled carbon nanotube (SWCNT) has been addressed. Based on the Debye theory, the second-order three-phonon Umklapp, mass difference (MD), and boundary scatterings have been incorporated to formulate. in both low-and high-temperature regimes. It is proposed that. at low temperature (T) follows the T-3 law and is independent of the second-order three-phonon Umklapp and MD scatterings. The form factor due to MD scattering also plays a key role in the significant variation of. in addition to the SWCNT length. The present diameter-independent model of. agrees well with the available experimental data on suspended intrinsic metallic SWCNTs over a wide range of temperature and can be carried forward for electrothermal analyses of CNT-based interconnects.
Resumo:
An exact numerical calculation of ensemble-averaged length-scale-dependent conductance for the one-dimensional Anderson model is shown to support an earlier conjecture for a conductance minimum. The numerical results can be understood in terms of the Thouless expression for the conductance and the Wigner level-spacing statistics.
Resumo:
Wireless mesh networks with multi-beam capability at each node through the use of multi-antenna beamforming are becoming practical and attracting increased research attention. Increased capacity due to spatial reuse and increased transmission range are potential benefits in using multiple directional beams in each node. In this paper, we are interested in low-complexity scheduling algorithms in such multi-beam wireless networks. In particular, we present a scheduling algorithm based on queue length information of the past slots in multi-beam networks, and prove its stability. We present a distributed implementation of this proposed algorithm. Numerical results show that significant improvement in delay performance is achieved using the proposed multi-beam scheduling compared to omni-beam scheduling. In addition, the proposed algorithm is shown to achieve a significant reduction in the signaling overhead compared to a current slot queue length approach.
Resumo:
Molecular dynamics investigation of model diatomic species confined to the alpha-cages of zeolite NaY is reported. The dependence of self-diffusivity on the bond length of the diatomic species has been investigated. Three different sets of runs have been carried out. In the first set, the two atoms of the diatomic molecule interact with the zeolite atoms with equal strength (example, O-2, the symmetric case). In the second and third sets which correspond to asymmetric cases, the two atoms of the diatomic molecule interact with unequal strengths (example, CO). The result for the symmetric case exhibits a well-defined maximum in self-diffusivity for an intermediate bond length. In contrast to this, the intermediate asymmetry leads to a less pronounced maximum. For the large asymmetric case, the maximum is completely absent. These findings are analyzed by computing a number of related properties. These results provide a direct confirmation at the microscopic level of the suggestion by Derouane that the supermobility observed experimentally by Kemball has its origin in the mutual cancellation of forces. The maximum in diffusivity from molecular dynamics is seen at the value predicted by the levitation effect. Further, these findings suggest a role for symmetry in the existence of a diffusivity maximum as a function of diameter of the diffusant often referred to as the levitation effect. The nature of the required symmetry for the existence of anomalous diffusivity is interaction symmetry which is different from that normally encountered in crystallography.
Resumo:
Micelles of different dimeric amphiphiles Br-, n-C(16)H(33)NMe(2)(+) -(CH)(m)-N(+)Me(2)-n-C16H33, Br- (where m = 3, 4, 5, 6, 8, 10, and 12) adapt different morphologies and internal packing arrangements in aqueous media depending on their spacer chain length (m). Detailed measurements of small angle neutron scattering (SANS) cross sections from different bis-cationic, dimeric surfactant micelles in aqueous media (D2O) are reported. The data have been analyzed using the Hayter and Penfold model for macro ion solution to compute the interparticle structure factor S(Q) taking into account the screened Coulomb interactions between the dimeric micelles. The SANS analysis clearly indicated that the extent of aggregate growth and the variations of shapes of the dimeric micelles depend primarily on the spacer chain length. With spacer chain length, m less than or equal to 4, the propensity of micellar growth was particularly pronounced. The effects of the variation of the concentration of dimeric surfactants with m = 5 and 10 on the SANS spectra and the effects of the temperature variation for the micellar system with m = 10 were also examined. The critical micelle concentrations (cmc) and their microenvironmental feature, namely, the microviscosities that the dimeric micellar aggregates offer to a solubilized, extrinsic fluorescence probe, 1,6-diphenyl-1,3,5-hexatriene, were also determined. The changes of cmcs and microviscosities as a function of spacer chain length have been explained in terms of conformational variations and progressive looping of the spacer in micellar core upon increasing m values.
Resumo:
We consider discrete-time versions of two classical problems in the optimal control of admission to a queueing system: i) optimal routing of arrivals to two parallel queues and ii) optimal acceptance/rejection of arrivals to a single queue. We extend the formulation of these problems to permit a k step delay in the observation of the queue lengths by the controller. For geometric inter-arrival times and geometric service times the problems are formulated as controlled Markov chains with expected total discounted cost as the minimization objective. For problem i) we show that when k = 1, the optimal policy is to allocate an arrival to the queue with the smaller expected queue length (JSEQ: Join the Shortest Expected Queue). We also show that for this problem, for k greater than or equal to 2, JSEQ is not optimal. For problem ii) we show that when k = 1, the optimal policy is a threshold policy. There are, however, two thresholds m(0) greater than or equal to m(1) > 0, such that mo is used when the previous action was to reject, and mi is used when the previous action was to accept.
Resumo:
We report the synthesis of ternary transition metal nitrides of the formula MWN(2) for M=Mn, Co, Ni by reaction of the corresponding MWO(4) with NH3 gas at 600-700 degrees C. MnWN2 is isostructural with the already-known FeWN2, crystallizing in a hexagonal structure (a=2.901(2), b=16.48(5) Angstrom) related to LiMoN2. CoWN2 and NiWN2 (which are isostructural amongst themselves) adopt a different hexagonal structure with a smaller c parameter. While the Mn and Fe nitrides are semiconducting, the Co and Ni nitrides are semimetallic.
Resumo:
This report deals with a study of the properties of internal cavities of dendritic macromolecules that are capable Of encapsulating and mediating photoreactions of guest molecules. The internal cavity structures of dendrimers are determined by the interfacial regions between the aqueous exterior and hydrocarbon like interior constituted by the linkers that connect symmetrically sited branch points constituting the dendrimer and head groups that cap the dendrimers. Phloroglucinol-based poly(alkyl aryl ether) dendrimers constituted with a homologous series of alkyl linkers were undertaken for the current study. Twelve dendrimers within first, second, and third generations, having ethyl, n-propyl, n-butyl, and n-pentyl groups as the linkers and hydroxyl groups at peripheries in each generation, were synthesized. Encapsulation of pyrene and coumarins by aqueous basic solutions of dendrimers were monitored-by UV-vis and fluorescence spectroscopies, which showed that a lower generation dendrimer with an optimal alkyl linker presented better encapsulation abilities than a higher generation dendrimer. Norrish type I photoreaction of dibenzyl ketone was carried out within the above: series of dendrimers to probe their abilities to hold guests and reactive inthermediate radical pairs within themselves. The extent of cage effect from the series of third generation dendrimers was observed to be higher with dendrimers having an n-pentyl group as the linker.
Resumo:
Ca-doped manganite La1-xCaxMnO3 samples with x=0.2 and 0.4 were investigated by extended x-ray absorption fine structure (EXAFS) as a function of temperature and preparation method. The samples exhibit characteristic resistivity change across the metal-insulator (MI) transition temperature whose shape and position depend on Ca-doping concentration and sample thermal treatment. EXAFS results evidenced an increase of nonthermal disorder at the MI transition temperature which is significantly correlated with the resistivity behavior.