800 resultados para Dates de conservation
Resumo:
Integrating connectivity patterns into marine ecosystem management is a fundamental step, specially for stock subjected to the combined impacts of human activities (overfishing, habitat degradation, etc.) and climate changes. Thus, management of marine resources must incorporates the spatial scales over which the populations are connected. Notwithstanding, studying these dynamics remains a crucial and hard task and the predictions of the temporal and spatial patterns of these mechanisms are still particularly challenging. This thesis aims to puzzle over the red mullet Mullus barbatus population connectivity in the Western Mediterranean Sea, by implementing a multidisciplinary approach. Otolith sclerochronology, larval dispersal modelling and genetic techniques were gathered in this study. More particularly, this research project focused on early life history stages of red mullet and their role in the characterization of connectivity dynamics. The results show that M. barbatus larval dispersal distances can reach a range of 200 km. The differences in early life traits (i.e. PLD, spawning and settlement dates) observed between various areas of the Western Mediterranean Sea suggest a certain level of larval patchiness, likely due to the occurrence of different spawning pulses during the reproductive period. The dispersal of individuals across distant areas, even not significant in demographic terms, is accountable for the maintenance of the genetic flow among different demes. Fluctuations in the level of exchange among different areas, due to the variability of the source-sink dynamics, could have major implications in the population connectivity patterns. These findings highlight the reliability of combining several approaches and represent a benchmark for the definition of a proper resource management, with considerable engagements in effectively assuring the beneficial effects of the existent and future conservation strategies.
Resumo:
Fazey, I., Fischer, J., Lindenmayer, D. B. (2005). What do conservation biologists publish? Biological Conservation, 124 (1) 63-73. RAE2008
Resumo:
Pregnancy-specific glycoproteins (PSGs) are highly glycosylated secreted proteins encoded by multi-gene families in some placental mammals. They are carcinoembryonic antigen (CEA) family and immunoglobulin (Ig) superfamily members. PSGs are immunomodulatory, and have been demonstrated to possess antiplatelet and pro-angiogenic properties. Low serum levels of these proteins have been correlated with adverse pregnancy outcomes. Objectives: Main research goals of this thesis were: 1). To attempt to replicate previously reported cytokine responses to PSG-treatment of immune cells and subsequently to investigate functionally important amino acids within PSG1. 2). To determine whether candidate receptor, integrin αvβ3, was a binding partner for PSG1 and to investigate whether PSG1 possessed functionality in a leukocyte-endothelial interaction assay. 3). To determine whether proteins generated from recently identified putative PSG genes in the horse shared functional properties with PSGs from other species. Outcomes: 1). Sequential domain deletion of PSG1 as well as mutation of conserved residues within the PSG1 Ndomain did not affect PSG1-induced TGF-β1. The investigated response was subsequently found to be the result of latent TGF-β1 contaminating the recombinant protein. Protein further purified by SEC to remove this showed no induction of TGF-β1. The most N-terminal glycosylation site was demonstrated to have an important role in PSG N domain secretion. PSG1 attenuated LPS-induced IL-6 and TNF-α. Investigations into signalling underpinning this proved inconclusive. 2). Integrin αvβ3 was identified as a novel PSG1 receptor mediating an as yet unknown function. Preliminary investigations into a role for PSGs as inhibitors of leukocyte endothelial interactions showed no effect by PSG1. 3). Horse PSG protein, CEACAM49, was shown to be similarly contaminated by latent TGF-β1 particle and once removed did not demonstrate TGF-β1 release. Interestingly horse PSG did show anti-platelet properties through inhibition of the plateletfibrinogen interaction as previously published for mouse and human PSGs.
Resumo:
BACKGROUND: The nutrient-sensing Tor pathway governs cell growth and is conserved in nearly all eukaryotic organisms from unicellular yeasts to multicellular organisms, including humans. Tor is the target of the immunosuppressive drug rapamycin, which in complex with the prolyl isomerase FKBP12 inhibits Tor functions. Rapamycin is a gold standard drug for organ transplant recipients that was approved by the FDA in 1999 and is finding additional clinical indications as a chemotherapeutic and antiproliferative agent. Capitalizing on the plethora of recently sequenced genomes we have conducted comparative genomic studies to annotate the Tor pathway throughout the fungal kingdom and related unicellular opisthokonts, including Monosiga brevicollis, Salpingoeca rosetta, and Capsaspora owczarzaki. RESULTS: Interestingly, the Tor signaling cascade is absent in three microsporidian species with available genome sequences, the only known instance of a eukaryotic group lacking this conserved pathway. The microsporidia are obligate intracellular pathogens with highly reduced genomes, and we hypothesize that they lost the Tor pathway as they adapted and streamlined their genomes for intracellular growth in a nutrient-rich environment. Two TOR paralogs are present in several fungal species as a result of either a whole genome duplication or independent gene/segmental duplication events. One such event was identified in the amphibian pathogen Batrachochytrium dendrobatidis, a chytrid responsible for worldwide global amphibian declines and extinctions. CONCLUSIONS: The repeated independent duplications of the TOR gene in the fungal kingdom might reflect selective pressure acting upon this kinase that populates two proteinaceous complexes with different cellular roles. These comparative genomic analyses illustrate the evolutionary trajectory of a central nutrient-sensing cascade that enables diverse eukaryotic organisms to respond to their natural environments.
Resumo:
Chimpanzees (Pan troglodytes) are often used in movies, commercials and print advertisements with the intention of eliciting a humorous response from audiences. The portrayal of chimpanzees in unnatural, human-like situations may have a negative effect on the public's understanding of their endangered status in the wild while making them appear as suitable pets. Alternatively, media content that elicits a positive emotional response toward chimpanzees may increase the public's commitment to chimpanzee conservation. To test these competing hypotheses, participants (n = 165) watched a series of commercials in an experiment framed as a marketing study. Imbedded within the same series of commercials was one of three chimpanzee videos. Participants either watched 1) a chimpanzee conservation commercial, 2) commercials containing "entertainment" chimpanzees or 3) control footage of the natural behavior of wild chimpanzees. Results from a post-viewing questionnaire reveal that participants who watched the conservation message understood that chimpanzees were endangered and unsuitable as pets at higher levels than those viewing the control footage. Meanwhile participants watching commercials with entertainment chimpanzees showed a decrease in understanding relative to those watching the control footage. In addition, when participants were given the opportunity to donate part of their earnings from the experiment to a conservation charity, donations were least frequent in the group watching commercials with entertainment chimpanzees. Control questions show that participants did not detect the purpose of the study. These results firmly support the hypothesis that use of entertainment chimpanzees in the popular media negatively distorts the public's perception and hinders chimpanzee conservation efforts.
Resumo:
Geospatial modeling is one of the most powerful tools available to conservation biologists for estimating current species ranges of Earth's biodiversity. Now, with the advantage of predictive climate models, these methods can be deployed for understanding future impacts on threatened biota. Here, we employ predictive modeling under a conservative estimate of future climate change to examine impacts on the future abundance and geographic distributions of Malagasy lemurs. Using distribution data from the primary literature, we employed ensemble species distribution models and geospatial analyses to predict future changes in species distributions. Current species distribution models (SDMs) were created within the BIOMOD2 framework that capitalizes on ten widely used modeling techniques. Future and current SDMs were then subtracted from each other, and areas of contraction, expansion, and stability were calculated. Model overprediction is a common issue associated Malagasy taxa. Accordingly, we introduce novel methods for incorporating biological data on dispersal potential to better inform the selection of pseudo-absence points. This study predicts that 60% of the 57 species examined will experience a considerable range of reductions in the next seventy years entirely due to future climate change. Of these species, range sizes are predicted to decrease by an average of 59.6%. Nine lemur species (16%) are predicted to expand their ranges, and 13 species (22.8%) distribution sizes were predicted to be stable through time. Species ranges will experience severe shifts, typically contractions, and for the majority of lemur species, geographic distributions will be considerably altered. We identify three areas in dire need of protection, concluding that strategically managed forest corridors must be a key component of lemur and other biodiversity conservation strategies. This recommendation is all the more urgent given that the results presented here do not take into account patterns of ongoing habitat destruction relating to human activities.
Resumo:
p.31-42