868 resultados para Data mining


Relevância:

70.00% 70.00%

Publicador:

Resumo:

In [1], the authors proposed a framework for automated clustering and visualization of biological data sets named AUTO-HDS. This letter is intended to complement that framework by showing that it is possible to get rid of a user-defined parameter in a way that the clustering stage can be implemented more accurately while having reduced computational complexity

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Il presente lavoro nasce dall’obiettivo di individuare strumenti statistici per indagare, sotto diversi aspetti, il flusso di lavoro di un Laboratorio di Anatomia Patologica. Il punto di partenza dello studio è l’ambiente di lavoro di ATHENA, software gestionale utilizzato nell’Anatomia Patologica, sviluppato dalla NoemaLife S.p.A., azienda specializzata nell’informatica per la sanità. A partire da tale applicativo è stato innanzitutto formalizzato il workflow del laboratorio (Capitolo 2), nelle sue caratteristiche e nelle sue possibili varianti, identificando le operazioni principali attraverso una serie di “fasi”. Proprio le fasi, unitamente alle informazioni addizionali ad esse associate, saranno per tutta la trattazione e sotto diversi punti di vista al centro dello studio. L’analisi che presentiamo è stata per completezza sviluppata in due scenari che tengono conto di diversi aspetti delle informazioni in possesso. Il primo scenario tiene conto delle sequenze di fasi, che si presentano nel loro ordine cronologico, comprensive di eventuali ripetizioni o cicli di fasi precedenti alla conclusione. Attraverso l’elaborazione dei dati secondo specifici formati è stata svolta un’iniziale indagine grafica di Workflow Mining (Capitolo 3) grazie all’ausilio di EMiT, un software che attraverso un set di log di processo restituisce graficamente il flusso di lavoro che li rappresenta. Questa indagine consente già di valutare la completezza dell’utilizzo di un applicativo rispetto alle sue potenzialità. Successivamente, le stesse fasi sono state elaborate attraverso uno specifico adattamento di un comune algoritmo di allineamento globale, l’algoritmo Needleman-Wunsch (Capitolo 4). L’utilizzo delle tecniche di allineamento applicate a sequenze di processo è in grado di individuare, nell’ambito di una specifica codifica delle fasi, le similarità tra casi clinici. L’algoritmo di Needleman-Wunsch individua le identità e le discordanze tra due stringhe di caratteri, assegnando relativi punteggi che portano a valutarne la similarità. Tale algoritmo è stato opportunamente modificato affinché possa riconoscere e penalizzare differentemente cicli e ripetizioni, piuttosto che fasi mancanti. Sempre in ottica di allineamento sarà utilizzato l’algoritmo euristico Clustal, che a partire da un confronto pairwise tra sequenze costruisce un dendrogramma rappresentante graficamente l’aggregazione dei casi in funzione della loro similarità. Proprio il dendrogramma, per la sua struttura grafica ad albero, è in grado di mostrare intuitivamente l’andamento evolutivo della similarità di un pattern di casi. Il secondo scenario (Capitolo 5) aggiunge alle sequenze l’informazione temporale in termini di istante di esecuzione di ogni fase. Da un dominio basato su sequenze di fasi, si passa dunque ad uno scenario di serie temporali. I tempi rappresentano infatti un dato essenziale per valutare la performance di un laboratorio e per individuare la conformità agli standard richiesti. Il confronto tra i casi è stato effettuato con diverse modalità, in modo da stabilire la distanza tra tutte le coppie sotto diversi aspetti: le sequenze, rappresentate in uno specifico sistema di riferimento, sono state confrontate in base alla Distanza Euclidea ed alla Dynamic Time Warping, in grado di esprimerne le discordanze rispettivamente temporali, di forma e, dunque, di processo. Alla luce dei risultati e del loro confronto, saranno presentate già in questa fase le prime valutazioni sulla pertinenza delle distanze e sulle informazioni deducibili da esse. Il Capitolo 6 rappresenta la ricerca delle correlazioni tra elementi caratteristici del processo e la performance dello stesso. Svariati fattori come le procedure utilizzate, gli utenti coinvolti ed ulteriori specificità determinano direttamente o indirettamente la qualità del servizio erogato. Le distanze precedentemente calcolate vengono dunque sottoposte a clustering, una tecnica che a partire da un insieme eterogeneo di elementi individua famiglie o gruppi simili. L’algoritmo utilizzato sarà l’UPGMA, comunemente applicato nel clustering in quanto, utilizzando, una logica di medie pesate, porta a clusterizzazioni pertinenti anche in ambiti diversi, dal campo biologico a quello industriale. L’ottenimento dei cluster potrà dunque essere finalmente sottoposto ad un’attività di ricerca di correlazioni utili, che saranno individuate ed interpretate relativamente all’attività gestionale del laboratorio. La presente trattazione propone quindi modelli sperimentali adattati al caso in esame ma idealmente estendibili, interamente o in parte, a tutti i processi che presentano caratteristiche analoghe.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Il problema relativo alla predizione, la ricerca di pattern predittivi all‘interno dei dati, è stato studiato ampiamente. Molte metodologie robuste ed efficienti sono state sviluppate, procedimenti che si basano sull‘analisi di informazioni numeriche strutturate. Quella testuale, d‘altro canto, è una tipologia di informazione fortemente destrutturata. Quindi, una immediata conclusione, porterebbe a pensare che per l‘analisi predittiva su dati testuali sia necessario sviluppare metodi completamente diversi da quelli ben noti dalle tecniche di data mining. Un problema di predizione può essere risolto utilizzando invece gli stessi metodi : dati testuali e documenti possono essere trasformati in valori numerici, considerando per esempio l‘assenza o la presenza di termini, rendendo di fatto possibile una utilizzazione efficiente delle tecniche già sviluppate. Il text mining abilita la congiunzione di concetti da campi di applicazione estremamente eterogenei. Con l‘immensa quantità di dati testuali presenti, basti pensare, sul World Wide Web, ed in continua crescita a causa dell‘utilizzo pervasivo di smartphones e computers, i campi di applicazione delle analisi di tipo testuale divengono innumerevoli. L‘avvento e la diffusione dei social networks e della pratica di micro blogging abilita le persone alla condivisione di opinioni e stati d‘animo, creando un corpus testuale di dimensioni incalcolabili aggiornato giornalmente. Le nuove tecniche di Sentiment Analysis, o Opinion Mining, si occupano di analizzare lo stato emotivo o la tipologia di opinione espressa all‘interno di un documento testuale. Esse sono discipline attraverso le quali, per esempio, estrarre indicatori dello stato d‘animo di un individuo, oppure di un insieme di individui, creando una rappresentazione dello stato emotivo sociale. L‘andamento dello stato emotivo sociale può condizionare macroscopicamente l‘evolvere di eventi globali? Studi in campo di Economia e Finanza Comportamentale assicurano un legame fra stato emotivo, capacità nel prendere decisioni ed indicatori economici. Grazie alle tecniche disponibili ed alla mole di dati testuali continuamente aggiornati riguardanti lo stato d‘animo di milioni di individui diviene possibile analizzare tali correlazioni. In questo studio viene costruito un sistema per la previsione delle variazioni di indici di borsa, basandosi su dati testuali estratti dalla piattaforma di microblogging Twitter, sotto forma di tweets pubblici; tale sistema include tecniche di miglioramento della previsione basate sullo studio di similarità dei testi, categorizzandone il contributo effettivo alla previsione.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Nowadays, more and more data is collected in large amounts, such that the need of studying it both efficiently and profitably is arising; we want to acheive new and significant informations that weren't known before the analysis. At this time many graph mining algorithms have been developed, but an algebra that could systematically define how to generalize such operations is missing. In order to propel the development of a such automatic analysis of an algebra, We propose for the first time (to the best of my knowledge) some primitive operators that may be the prelude to the systematical definition of a hypergraph algebra in this regard.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this work we will discuss about a project started by the Emilia-Romagna Regional Government regarding the manage of the public transport. In particular we will perform a data mining analysis on the data-set of this project. After introducing the Weka software used to make our analysis, we will discover the most useful data mining techniques and algorithms; and we will show how these results can be used to violate the privacy of the same public transport operators. At the end, despite is off topic of this work, we will spend also a few words about how it's possible to prevent this kind of attack.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Sviluppo e analisi di un dataset campione, composto da circa 3 mln di entry ed estratto da un data warehouse di informazioni riguardanti il consumo energetico di diverse smart home.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Smart homes for the aging population have recently started attracting the attention of the research community. The "health state" of smart homes is comprised of many different levels; starting with the physical health of citizens, it also includes longer-term health norms and outcomes, as well as the arena of positive behavior changes. One of the problems of interest is to monitor the activities of daily living (ADL) of the elderly, aiming at their protection and well-being. For this purpose, we installed passive infrared (PIR) sensors to detect motion in a specific area inside a smart apartment and used them to collect a set of ADL. In a novel approach, we describe a technology that allows the ground truth collected in one smart home to train activity recognition systems for other smart homes. We asked the users to label all instances of all ADL only once and subsequently applied data mining techniques to cluster in-home sensor firings. Each cluster would therefore represent the instances of the same activity. Once the clusters were associated to their corresponding activities, our system was able to recognize future activities. To improve the activity recognition accuracy, our system preprocessed raw sensor data by identifying overlapping activities. To evaluate the recognition performance from a 200-day dataset, we implemented three different active learning classification algorithms and compared their performance: naive Bayesian (NB), support vector machine (SVM) and random forest (RF). Based on our results, the RF classifier recognized activities with an average specificity of 96.53%, a sensitivity of 68.49%, a precision of 74.41% and an F-measure of 71.33%, outperforming both the NB and SVM classifiers. Further clustering markedly improved the results of the RF classifier. An activity recognition system based on PIR sensors in conjunction with a clustering classification approach was able to detect ADL from datasets collected from different homes. Thus, our PIR-based smart home technology could improve care and provide valuable information to better understand the functioning of our societies, as well as to inform both individual and collective action in a smart city scenario.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper presents the results of a Secchi depth data mining study for the North Sea - Baltic Sea region. 40,829 measurements of Secchi depth were compiled from the area as a result of this study. 4.3% of the observations were found in the international data centers [ICES Oceanographic Data Center in Denmark and the World Ocean Data Center A (WDC-A) in the USA], while 95.7% of the data was provided by individuals and ocean research institutions from the surrounding North Sea and Baltic Sea countries. Inquiries made at the World Ocean Data Center B (WDC-B) in Russia suggested that there could be significant additional holdings in that archive but, unfortunately, no data could be made available. The earliest Secchi depth measurement retrieved in this study dates back to 1902 for the Baltic Sea, while the bulk of the measurements were gathered after 1970. The spatial distribution of Secchi depth measurements in the North Sea is very uneven with surprisingly large sampling gaps in the Western North Sea. Quarterly and annual Secchi depth maps with a 0.5° x 0.5° spatial resolution are provided for the transition area between the North Sea and the Baltic Sea (4°E-16°E, 53°N-60°N).

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The Microarray technique is rather powerful, as it allows to test up thousands of genes at a time, but this produces an overwhelming set of data files containing huge amounts of data, which is quite difficult to pre-process, separate, classify and correlate for interesting conclusions to be extracted. Modern machine learning, data mining and clustering techniques based on information theory, are needed to read and interpret the information contents buried in those large data sets. Independent Component Analysis method can be used to correct the data affected by corruption processes or to filter the uncorrectable one and then clustering methods can group similar genes or classify samples. In this paper a hybrid approach is used to obtain a two way unsupervised clustering for a corrected microarray data.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Sensor networks are increasingly becoming one of the main sources of Big Data on the Web. However, the observations that they produce are made available with heterogeneous schemas, vocabularies and data formats, making it difficult to share and reuse these data for other purposes than those for which they were originally set up. In this thesis we address these challenges, considering how we can transform streaming raw data to rich ontology-based information that is accessible through continuous queries for streaming data. Our main contribution is an ontology-based approach for providing data access and query capabilities to streaming data sources, allowing users to express their needs at a conceptual level, independent of implementation and language-specific details. We introduce novel query rewriting and data translation techniques that rely on mapping definitions relating streaming data models to ontological concepts. Specific contributions include: • The syntax and semantics of the SPARQLStream query language for ontologybased data access, and a query rewriting approach for transforming SPARQLStream queries into streaming algebra expressions. • The design of an ontology-based streaming data access engine that can internally reuse an existing data stream engine, complex event processor or sensor middleware, using R2RML mappings for defining relationships between streaming data models and ontology concepts. Concerning the sensor metadata of such streaming data sources, we have investigated how we can use raw measurements to characterize streaming data, producing enriched data descriptions in terms of ontological models. Our specific contributions are: • A representation of sensor data time series that captures gradient information that is useful to characterize types of sensor data. • A method for classifying sensor data time series and determining the type of data, using data mining techniques, and a method for extracting semantic sensor metadata features from the time series.