847 resultados para Data Mining, Big Data, Consumi energetici, Weka Data Cleaning
Resumo:
Fuzzy data has grown to be an important factor in data mining. Whenever uncertainty exists, simulation can be used as a model. Simulation is very flexible, although it can involve significant levels of computation. This article discusses fuzzy decision-making using the grey related analysis method. Fuzzy models are expected to better reflect decision-making uncertainty, at some cost in accuracy relative to crisp models. Monte Carlo simulation is used to incorporate experimental levels of uncertainty into the data and to measure the impact of fuzzy decision tree models using categorical data. Results are compared with decision tree models based on crisp continuous data.
Resumo:
This special issue is a collection of the selected papers published on the proceedings of the First International Conference on Advanced Data Mining and Applications (ADMA) held in Wuhan, China in 2005. The articles focus on the innovative applications of data mining approaches to the problems that involve large data sets, incomplete and noise data, or demand optimal solutions.
Resumo:
Frequent Itemsets mining is well explored for various data types, and its computational complexity is well understood. There are methods to deal effectively with computational problems. This paper shows another approach to further performance enhancements of frequent items sets computation. We have made a series of observations that led us to inventing data pre-processing methods such that the final step of the Partition algorithm, where a combination of all local candidate sets must be processed, is executed on substantially smaller input data. The paper shows results from several experiments that confirmed our general and formally presented observations.
Resumo:
Objective: An estimation of cut-off points for the diagnosis of diabetes mellitus (DM) based on individual risk factors. Methods: A subset of the 1991 Oman National Diabetes Survey is used, including all patients with a 2h post glucose load >= 200 mg/dl (278 subjects) and a control group of 286 subjects. All subjects previously diagnosed as diabetic and all subjects with missing data values were excluded. The data set was analyzed by use of the SPSS Clementine data mining system. Decision Tree Learners (C5 and CART) and a method for mining association rules (the GRI algorithm) are used. The fasting plasma glucose (FPG), age, sex, family history of diabetes and body mass index (BMI) are input risk factors (independent variables), while diabetes onset (the 2h post glucose load >= 200 mg/dl) is the output (dependent variable). All three techniques used were tested by use of crossvalidation (89.8%). Results: Rules produced for diabetes diagnosis are: A- GRI algorithm (1) FPG>=108.9 mg/dl, (2) FPG>=107.1 and age>39.5 years. B- CART decision trees: FPG >=110.7 mg/dl. C- The C5 decision tree learner: (1) FPG>=95.5 and 54, (2) FPG>=106 and 25.2 kg/m2. (3) FPG>=106 and =133 mg/dl. The three techniques produced rules which cover a significant number of cases (82%), with confidence between 74 and 100%. Conclusion: Our approach supports the suggestion that the present cut-off value of fasting plasma glucose (126 mg/dl) for the diagnosis of diabetes mellitus needs revision, and the individual risk factors such as age and BMI should be considered in defining the new cut-off value.
Resumo:
This paper presents load profiles of electricity customers, using the knowledge discovery in databases (KDD) procedure, a data mining technique, to determine the load profiles for different types of customers. In this paper, the current load profiling methods are compared using data mining techniques, by analysing and evaluating these classification techniques. The objective of this study is to determine the best load profiling methods and data mining techniques to classify, detect and predict non-technical losses in the distribution sector, due to faulty metering and billing errors, as well as to gather knowledge on customer behaviour and preferences so as to gain a competitive advantage in the deregulated market. This paper focuses mainly on the comparative analysis of the classification techniques selected; a forthcoming paper will focus on the detection and prediction methods.
Resumo:
O trabalho desenvolvido analisa a Comunicação Social no contexto da internet e delineia novas metodologias de estudo para a área na filtragem de significados no âmbito científico dos fluxos de informação das redes sociais, mídias de notícias ou qualquer outro dispositivo que permita armazenamento e acesso a informação estruturada e não estruturada. No intento de uma reflexão sobre os caminhos, que estes fluxos de informação se desenvolvem e principalmente no volume produzido, o projeto dimensiona os campos de significados que tal relação se configura nas teorias e práticas de pesquisa. O objetivo geral deste trabalho é contextualizar a área da Comunicação Social dentro de uma realidade mutável e dinâmica que é o ambiente da internet e fazer paralelos perante as aplicações já sucedidas por outras áreas. Com o método de estudo de caso foram analisados três casos sob duas chaves conceituais a Web Sphere Analysis e a Web Science refletindo os sistemas de informação contrapostos no quesito discursivo e estrutural. Assim se busca observar qual ganho a Comunicação Social tem no modo de visualizar seus objetos de estudo no ambiente das internet por essas perspectivas. O resultado da pesquisa mostra que é um desafio para o pesquisador da Comunicação Social buscar novas aprendizagens, mas a retroalimentação de informação no ambiente colaborativo que a internet apresenta é um caminho fértil para pesquisa, pois a modelagem de dados ganha corpus analítico quando o conjunto de ferramentas promovido e impulsionado pela tecnologia permite isolar conteúdos e possibilita aprofundamento dos significados e suas relações.
Resumo:
Today, the data available to tackle many scientific challenges is vast in quantity and diverse in nature. The exploration of heterogeneous information spaces requires suitable mining algorithms as well as effective visual interfaces. Most existing systems concentrate either on mining algorithms or on visualization techniques. Though visual methods developed in information visualization have been helpful, for improved understanding of a complex large high-dimensional dataset, there is a need for an effective projection of such a dataset onto a lower-dimension (2D or 3D) manifold. This paper introduces a flexible visual data mining framework which combines advanced projection algorithms developed in the machine learning domain and visual techniques developed in the information visualization domain. The framework follows Shneiderman’s mantra to provide an effective user interface. The advantage of such an interface is that the user is directly involved in the data mining process. We integrate principled projection methods, such as Generative Topographic Mapping (GTM) and Hierarchical GTM (HGTM), with powerful visual techniques, such as magnification factors, directional curvatures, parallel coordinates, billboarding, and user interaction facilities, to provide an integrated visual data mining framework. Results on a real life high-dimensional dataset from the chemoinformatics domain are also reported and discussed. Projection results of GTM are analytically compared with the projection results from other traditional projection methods, and it is also shown that the HGTM algorithm provides additional value for large datasets. The computational complexity of these algorithms is discussed to demonstrate their suitability for the visual data mining framework.
Resumo:
We present CORDER (COmmunity Relation Discovery by named Entity Recognition) an un-supervised machine learning algorithm that exploits named entity recognition and co-occurrence data to associate individuals in an organization with their expertise and associates. We discuss the problems associated with evaluating unsupervised learners and report our initial evaluation experiments.