974 resultados para Data Interpretation, Statistical


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The objective of this report is to provide Iowa county engineers and highway maintenance personnel with procedures that will allow them to efficiently and effectively interpret and repair or avoid landslides. The research provides an overview of basic slope stability analyses that can be used to diagnose the cause and effect associated with a slope failure. Field evidence for identifying active or potential slope stability problems is outlined. A survey of county engineers provided data for presenting a slope stability risk map for the state of Iowa. Areas of high risk are along the western border and southeastern portion of the state. These regions contain deep to moderately deep loess. The central portion of the state is a low risk area where the surficial soils are glacial till or thin loess over till. In this region, the landslides appear to occur predominately in backslopes along deeply incised major rivers, such as the Des Moines River, or in foreslopes. The south-central portion of the state is an area of medium risk where failures are associated with steep backslopes and improperly compacted foreslopes. Soil shear strength data compiled from the Iowa DOT and consulting engineers files are correlated with geologic parent materials and mean values of shear strength parameters and unit weights were computed for glacial till, friable loess, plastic loess and local alluvium. Statistical tests demonstrate that friction angles and unit weights differ significantly but in some cases effective stress cohesion intercept and undrained shear strength data do not. Moreover, effective stress cohesion intercept and undrained shear strength data show a high degree of variability. The shear strength and unit weight data are used in slope stability analyses for both drained and undrained conditions to generate curves that can be used for a preliminary evaluation of the relative stability of slopes within the four materials. Reconnaissance trips to over fifty active and repaired landslides in Iowa suggest that, in general, landslides in Iowa are relatively shallow [i.e., failure surfaces less than 6 ft (2 m) deep] and are either translational or shallow rational. Two foreslope and two backslope failure case histories provide additional insights into slope stability problems and repair in Iowa. These include the observation that embankment soils compacted to less than 95% relative density show a marked strength decrease from soils at or above that density. Foreslopes constructed of soils derived from shale exhibit loss of strength as a result of weathering. In some situations, multiple causes of instability can be discerned from back analyses with the slope stability program XSTABL. In areas where the stratigraphy consists of loess over till or till over bedrock, the geologic contracts act as surfaces of groundwater accumulation that contribute to slope instability.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This project examines similarities and differences between the automated condition data collected on and off county paved roads and the manual condition data collected by Iowa Department of Transportation (DOT) staff in 2000 and 2001. Also, the researchers will provide staff support to the advisory committee in exploring other options to the highway need process. The results show that the automated condition data can be used in a converted highway needs process with no major differences between the two methods. Even though the foundation rating difference was significant, the foundation rating weighting factor in HWYNEEDS is minimal and should not have a major impact. In terms of RUTF formula based distribution, the results clearly show the superiority of the condition-based analysis compared to the non-condition based. That correlation can be further enhanced by adding more distress variables to the analysis.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Plant growth analysis presents difficulties related to statistical comparison of growth rates, and the analysis of variance of primary data could guide the interpretation of results. The objective of this work was to evaluate the analysis of variance of data from distinct harvests of an experiment, focusing especially on the homogeneity of variances and the choice of an adequate ANOVA model. Data from five experiments covering different crops and growth conditions were used. From the total number of variables, 19% were originally homoscedastic, 60% became homoscedastic after logarithmic transformation, and 21% remained heteroscedastic after transformation. Data transformation did not affect the F test in one experiment, whereas in the other experiments transformation modified the F test usually reducing the number of significant effects. Even when transformation has not altered the F test, mean comparisons led to divergent interpretations. The mixed ANOVA model, considering harvest as a random effect, reduced the number of significant effects of every factor which had the F test modified by this model. Examples illustrated that analysis of variance of primary variables provides a tool for identifying significant differences in growth rates. The analysis of variance imposes restrictions to experimental design thereby eliminating some advantages of the functional growth analysis.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Statistical summaries of streamflow data collected at 156 streamflow-gaging stations in Iowa are presented in this report. All gaging stations included for analysis have at least 10 years of continuous record collected before or through September 1996. The statistical summaries include (1) statistics of monthly and annual mean discharges; (2) monthly and annual flow durations; (3) magnitudes and frequencies of instantaneous peak discharges (flood frequencies); and (4) magnitudes and frequencies of high and low discharges. Also presented for each gaging station is a graph of the annual mean flows and, for most stations, selected values from the most-recent stage-discharge rating table.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This report is the final product of a two-year study that began October 1, 2013. In addition to the funding provided for this study by the Iowa Highway Research Board and the Iowa Department of Transportation (TR-669), the project was also funded by the U.S. Army Corps of Engineers and the U.S. Geological Survey. The report was published as an online report on January 4, 2016. The report is available online at http://dx.doi.org/10.3133/ofr20151214 . The main body of the report provides a description of the statistics presented for the streamgages and an explanation of the streamgage summaries, also included is a discussion of the USGS streamgage network in Iowa. Individual streamgage summaries are available as links listed in table 1, or all 184 streamgage summaries are available in a zipped file named Streamgage Summaries.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper presents a validation study on statistical nonsupervised brain tissue classification techniques in magnetic resonance (MR) images. Several image models assuming different hypotheses regarding the intensity distribution model, the spatial model and the number of classes are assessed. The methods are tested on simulated data for which the classification ground truth is known. Different noise and intensity nonuniformities are added to simulate real imaging conditions. No enhancement of the image quality is considered either before or during the classification process. This way, the accuracy of the methods and their robustness against image artifacts are tested. Classification is also performed on real data where a quantitative validation compares the methods' results with an estimated ground truth from manual segmentations by experts. Validity of the various classification methods in the labeling of the image as well as in the tissue volume is estimated with different local and global measures. Results demonstrate that methods relying on both intensity and spatial information are more robust to noise and field inhomogeneities. We also demonstrate that partial volume is not perfectly modeled, even though methods that account for mixture classes outperform methods that only consider pure Gaussian classes. Finally, we show that simulated data results can also be extended to real data.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background Analysing the observed differences for incidence or mortality of a particular disease between two different situations (such as time points, geographical areas, gender or other social characteristics) can be useful both for scientific or administrative purposes. From an epidemiological and public health point of view, it is of great interest to assess the effect of demographic factors in these observed differences in order to elucidate the effect of the risk of developing a disease or dying from it. The method proposed by Bashir and Estve, which splits the observed variation into three components: risk, population structure and population size is a common choice at practice. Results A web-based application, called RiskDiff has been implemented (available at http://rht.iconcologia.net/riskdiff.htm webcite), to perform this kind of statistical analyses, providing text and graphical summaries. Code from the implemented functions in R is also provided. An application to cancer mortality data from Catalonia is used for illustration. Conclusions Combining epidemiological with demographical factors is crucial for analysing incidence or mortality from a disease, especially if the population pyramids show substantial differences. The tool implemented may serve to promote and divulgate the use of this method to give advice for epidemiologic interpretation and decision making in public health.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Within the special geometry of the simplex, the sample space of compositional data, compositional orthonormal coordinates allow the application of any multivariate statistical approach. The search for meaningful coordinates has suggested balances (between two groups of parts)based on a sequential binary partition of a D-part compositionand a representation in form of a CoDa-dendrogram. Projected samples are represented in a dendrogram-like graph showing: (a) the way of grouping parts; (b) the explanatory role of subcompositions generated in the partition process; (c) the decomposition of the variance; (d) the center and quantiles of each balance. The representation is useful for the interpretation of balances and to describe the sample in a single diagram independently of the number of parts. Also, samples of two or more populations, as well as several samples from the same population, can be represented in the same graph, as long as they have the same parts registered. The approach is illustrated with an example of food consumption in Europe

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Longitudinal surveys are increasingly used to collect event history data on person-specific processes such as transitions between labour market states. Surveybased event history data pose a number of challenges for statistical analysis. These challenges include survey errors due to sampling, non-response, attrition and measurement. This study deals with non-response, attrition and measurement errors in event history data and the bias caused by them in event history analysis. The study also discusses some choices faced by a researcher using longitudinal survey data for event history analysis and demonstrates their effects. These choices include, whether a design-based or a model-based approach is taken, which subset of data to use and, if a design-based approach is taken, which weights to use. The study takes advantage of the possibility to use combined longitudinal survey register data. The Finnish subset of European Community Household Panel (FI ECHP) survey for waves 15 were linked at person-level with longitudinal register data. Unemployment spells were used as study variables of interest. Lastly, a simulation study was conducted in order to assess the statistical properties of the Inverse Probability of Censoring Weighting (IPCW) method in a survey data context. The study shows how combined longitudinal survey register data can be used to analyse and compare the non-response and attrition processes, test the missingness mechanism type and estimate the size of bias due to non-response and attrition. In our empirical analysis, initial non-response turned out to be a more important source of bias than attrition. Reported unemployment spells were subject to seam effects, omissions, and, to a lesser extent, overreporting. The use of proxy interviews tended to cause spell omissions. An often-ignored phenomenon classification error in reported spell outcomes, was also found in the data. Neither the Missing At Random (MAR) assumption about non-response and attrition mechanisms, nor the classical assumptions about measurement errors, turned out to be valid. Both measurement errors in spell durations and spell outcomes were found to cause bias in estimates from event history models. Low measurement accuracy affected the estimates of baseline hazard most. The design-based estimates based on data from respondents to all waves of interest and weighted by the last wave weights displayed the largest bias. Using all the available data, including the spells by attriters until the time of attrition, helped to reduce attrition bias. Lastly, the simulation study showed that the IPCW correction to design weights reduces bias due to dependent censoring in design-based Kaplan-Meier and Cox proportional hazard model estimators. The study discusses implications of the results for survey organisations collecting event history data, researchers using surveys for event history analysis, and researchers who develop methods to correct for non-sampling biases in event history data.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The recent rapid development of biotechnological approaches has enabled the production of large whole genome level biological data sets. In order to handle thesedata sets, reliable and ecient automated tools and methods for data processingand result interpretation are required. Bioinformatics, as the eld of studying andprocessing biological data, tries to answer this need by combining methods and approaches across computer science, statistics, mathematics and engineering to studyand process biological data. The need is also increasing for tools that can be used by the biological researchers themselves who may not have a strong statistical or computational background, which requires creating tools and pipelines with intuitive user interfaces, robust analysis workows and strong emphasis on result reportingand visualization. Within this thesis, several data analysis tools and methods have been developed for analyzing high-throughput biological data sets. These approaches, coveringseveral aspects of high-throughput data analysis, are specically aimed for gene expression and genotyping data although in principle they are suitable for analyzing other data types as well. Coherent handling of the data across the various data analysis steps is highly important in order to ensure robust and reliable results. Thus,robust data analysis workows are also described, putting the developed tools andmethods into a wider context. The choice of the correct analysis method may also depend on the properties of the specic data setandthereforeguidelinesforchoosing an optimal method are given. The data analysis tools, methods and workows developed within this thesis have been applied to several research studies, of which two representative examplesare included in the thesis. The rst study focuses on spermatogenesis in murinetestis and the second one examines cell lineage specication in mouse embryonicstem cells.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

For years, choosing the right career by monitoring the trends and scope for different career paths have been a requirement for all youngsters all over the world. In this paper we provide a scientific, data mining based method for job absorption rate prediction and predicting the waiting time needed for 100% placement, for different engineering courses in India. This will help the students in India in a great deal in deciding the right discipline for them for a bright future. Information about passed out students are obtained from the NTMIS ( National technical manpower information system ) NODAL center in Kochi, India residing in Cochin University of science and technology

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Modeling and predicting co-occurrences of events is a fundamental problem of unsupervised learning. In this contribution we develop a statistical framework for analyzing co-occurrence data in a general setting where elementary observations are joint occurrences of pairs of abstract objects from two finite sets. The main challenge for statistical models in this context is to overcome the inherent data sparseness and to estimate the probabilities for pairs which were rarely observed or even unobserved in a given sample set. Moreover, it is often of considerable interest to extract grouping structure or to find a hierarchical data organization. A novel family of mixture models is proposed which explain the observed data by a finite number of shared aspects or clusters. This provides a common framework for statistical inference and structure discovery and also includes several recently proposed models as special cases. Adopting the maximum likelihood principle, EM algorithms are derived to fit the model parameters. We develop improved versions of EM which largely avoid overfitting problems and overcome the inherent locality of EM--based optimization. Among the broad variety of possible applications, e.g., in information retrieval, natural language processing, data mining, and computer vision, we have chosen document retrieval, the statistical analysis of noun/adjective co-occurrence and the unsupervised segmentation of textured images to test and evaluate the proposed algorithms.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The classical statistical study of the wind speed in the atmospheric surface layer is made generally from the analysis of the three habitual components that perform the wind data, that is, the component W-E, the component S-N and the vertical component, considering these components independent. When the goal of the study of these data is the Aeolian energy, so is when wind is studied from an energetic point of view and the squares of wind components can be considered as compositional variables. To do so, each component has to be divided by the module of the corresponding vector. In this work the theoretical analysis of the components of the wind as compositional data is presented and also the conclusions that can be obtained from the point of view of the practical applications as well as those that can be derived from the application of this technique in different conditions of weather