933 resultados para DOPAMINE AGONISTS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cocaine blocks uptake by neuronal plasma membrane transporters for dopamine (DAT), serotonin (SERT), and norepinephrine (NET). Cocaine reward/reinforcement has been linked to actions at DAT or to blockade of SERT. However, knockouts of neither DAT, SERT, or NET reduce cocaine reward/reinforcement, leaving substantial uncertainty about cocaine's molecular mechanisms for reward. Conceivably, the molecular bases of cocaine reward might display sufficient redundancy that either DAT or SERT might be able to mediate cocaine reward in the other's absence. To test this hypothesis, we examined double knockout mice with deletions of one or both copies of both the DAT and SERT genes. These mice display viability, weight gain, histologic features, neurochemical parameters, and baseline behavioral features that allow tests of cocaine influences. Mice with even a single wild-type DAT gene copy and no SERT copies retain cocaine reward/reinforcement, as measured by conditioned place-preference testing. However, mice with no DAT and either no or one SERT gene copy display no preference for places where they have previously received cocaine. The serotonin dependence of cocaine reward in DAT knockout mice is thus confirmed by the elimination of cocaine place preference in DAT/SERT double knockout mice. These results provide insights into the brain molecular targets necessary for cocaine reward in knockout mice that develop in their absence and suggest novel strategies for anticocaine medication development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dopamine receptor genes are under complex transcription control, determining their unique regional distribution in the brain. We describe here a zinc finger type transcription factor, designated dopamine receptor regulating factor (DRRF), which binds to GC and GT boxes in the D1A and D2 dopamine receptor promoters and effectively displaces Sp1 and Sp3 from these sequences. Consequently, DRRF can modulate the activity of these dopamine receptor promoters. Highest DRRF mRNA levels are found in brain with a specific regional distribution including olfactory bulb and tubercle, nucleus accumbens, striatum, hippocampus, amygdala, and frontal cortex. Many of these brain regions also express abundant levels of various dopamine receptors. In vivo, DRRF itself can be regulated by manipulations of dopaminergic transmission. Mice treated with drugs that increase extracellular striatal dopamine levels (cocaine), block dopamine receptors (haloperidol), or destroy dopamine terminals (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) show significant alterations in DRRF mRNA. The latter observations provide a basis for dopamine receptor regulation after these manipulations. We conclude that DRRF is important for modulating dopaminergic transmission in the brain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of Escherichia coli heat-stable enterotoxin (ST) and uroguanylin were examined on the proliferation of T84 and Caco2 human colon carcinoma cells that express guanylyl cyclase C (GC-C) and SW480 human colon carcinoma cells that do not express this receptor. ST or uroguanylin inhibited proliferation of T84 and Caco2 cells, but not SW480 cells, in a concentration-dependent fashion, assessed by quantifying cell number, cell protein, and [3H]thymidine incorporation into DNA. These agonists did not inhibit proliferation by induction of apoptosis, assessed by TUNEL (terminal deoxynucleotidyl transferase-mediated dNTP-biotin nick end labeling of DNA fragments) assay and DNA laddering, or necrosis, assessed by trypan blue exclusion and lactate dehydrogenase release. Rather, ST prolonged the cell cycle, assessed by flow cytometry and [3H]thymidine incorporation into DNA. The cytostatic effects of GC-C agonists were associated with accumulation of intracellular cGMP, mimicked by the cell-permeant analog 8-Br-cGMP, and reproduced and potentiated by the cGMP-specific phosphodiesterase inhibitor zaprinast but not the inactive ST analog TJU 1-103. Thus, GC-C agonists regulate the proliferation of intestinal cells through cGMP-dependent mechanisms by delaying progression of the cell cycle. These data suggest that endogenous agonists of GC-C, such as uroguanylin, may play a role in regulating the balance between epithelial proliferation and differentiation in normal intestinal physiology. Therefore, GC-C ligands may be novel therapeutic agents for the treatment of patients with colorectal cancer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Brn-4 is a member of the POU transcription factor family and is expressed in the central nervous system. In this study, we addressed whether Brn-4 regulates expression of the D1A dopamine receptor gene. We found a functional Brn-4 responsive element in the intron of this gene by means of cotransfection chloramphenical acetyltransferase assays. This region contains two consensus sequences for binding of POU factors. Gel mobility-shift assays using glutathione S-transferase-Brn-4 fusion protein indicated that Brn-4 binds to these sequences. Both these sites are essential for transactivation by Brn-4 because deletion of either significantly reduced this enhancer activity. In situ hybridization revealed colocalization of Brn-4 and D1A mRNAs at the level of a single neuron in the rat striatum where this dopamine receptor is most abundantly expressed. Gel mobility-supershift assay using rat striatal nuclear extract and Brn-4 antibody confirmed the presence of Brn-4 in this brain region and its ability to bind to its consensus sequences in the D1A gene. These data suggest a functional role for Brn-4 in the expression of the D1A dopamine receptor gene both in vitro and in vivo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mesolimbic dopamine system, which arises in the ventral tegmental area (VTA), is an important neural substrate for opiate reinforcement and addiction. Chronic exposure to opiates is known to produce biochemical adaptations in this brain region. We now show that these adaptations are associated with structural changes in VTA dopamine neurons. Individual VTA neurons in paraformaldehyde-fixed brain sections from control or morphine-treated rats were injected with the fluorescent dye Lucifer yellow. The identity of the injected cells as dopaminergic or nondopaminergic was determined by immunohistochemical labeling of the sections for tyrosine hydroxylase. Chronic morphine treatment resulted in a mean approximately 25% reduction in the area and perimeter of VTA dopamine neurons. This reduction in cell size was prevented by concomitant treatment of rats with naltrexone, an opioid receptor antagonist, as well as by intra-VTA infusion of brain-derived neurotrophic factor. In contrast, chronic morphine treatment did not alter the size of nondopaminergic neurons in the VTA, nor did it affect the total number of dopaminergic neurons in this brain region. The results of these studies provide direct evidence for structural alterations in VTA dopamine neurons as a consequence of chronic opiate exposure, which could contribute to changes in mesolimbic dopamine function associated with addiction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main function of white adipose tissue is to store nutrient energy in the form of triglycerides. The mechanism by which free fatty acids (FFA) move into and out of the adipocyte has not been resolved. We show here that changes in intracellular pH (pH1) in adipocytes correlate with the movement of FFA across cellular membranes as predicted by the Kamp and Hamilton model of passive diffusion of FFA. Exposure of fat cells to lipolytic agents or external FFA results is a rapid intracellular acidification that is reversed by metabolism of the FFA or its removal by albumin. In contrast, insulin causes an alkalinization of the cell, consistent with its main function to promote esterification. Inhibition of Na+/H+ exchange in adipocytes does not prevent the changes in pHi caused by FFA, lipolytic agents, or insulin. A fatty acid dimer, which diffuses into the cell but is not metabolized, causes an irreversible acidification. Taken together, the data suggest that changes in pHi occur in adipocytes in response to the passive diffusion of un-ionized FFA (flip-flop) into and out of the cell and in response to their metabolism and production within the cell. These changes in pHi may, in turn, modulate hormonal signaling and metabolism with significant impact on cell function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ability of cocaine to inhibit the dopamine transporter (DAT) appears to be crucial for its reinforcing properties. The potential use of drugs that produce long-lasting inhibition of the DAT as a mean of preventing the "high" and reducing drug-seeking behavior has become a major strategy in medication development. However, neither the relation between the high and DAT inhibition nor the ability to block the high by prior DAT blockade have ever been demonstrated. To evaluate if DAT could prevent the high induced by methylphenidate (MP), a drug which like cocaine inhibits the DAT, we compared the responses in eight non-drug-abusing subjects between the first and the second of two MP doses (0.375 mg/kg, i.v.) given 60 min apart. At 60 min the high from MP has returned to baseline, but 75-80% of the drug remains in brain. Positron-emission tomography and [11C]d-threo-MP were used to estimate DAT occupancies at different times after MP. DAT inhibition by MP did not block or attenuate the high from a second dose of MP given 60 min later, despite a 80% residual transporter occupancy from the first dose. Furthermore some subjects did not perceive a high after single or repeated administration despite significant DAT blockade. These results indicate that DAT occupancy is not sufficient to account for the high, and that for DAT inhibitors to be therapeutically effective, occupancies > 80% may be required.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Full activation of T cells requires signaling through the T-cell antigen receptor (TCR) and additional surface molecules interacting with ligands on the antigen-presenting cell. TCR recognition of agonist ligands in the absence of accessory signals frequently results in the induction of a state of unresponsiveness termed anergy. However, even in the presence of costimulation, anergy can be induced by TCR partial agonists. The unique pattern of early receptor-induced tyrosine phosphorylation events induced by partial agonists has led to the hypothesis that altered TCR signaling is directly responsible for the development of anergy. Here we show that anergy induction is neither correlated with nor irreversibly determined by the pattern of early TCR-induced phosphorylation. Rather, it appears to result from the absence of downstream events related to interleukin 2 receptor occupancy and/or cell division. This implies that the anergic state can be manipulated independently of the precise pattern of early biochemical changes following TCR occupancy, a finding with implications for understanding the induction of self-tolerance and the use of partial agonist ligands in the treatment of autoimmune diseases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dopamine hypothesis of schizophrenia proposes that hyperactivity of dopaminergic transmission is associated with this illness, but direct observation of abnormalities of dopamine function in schizophrenia has remained elusive. We used a newly developed single photon emission computerized tomography method to measure amphetamine-induced dopamine release in the striatum of fifteen patients with schizophrenia and fifteen healthy controls. Amphetamine-induced dopamine release was estimated by the amphetamine-induced reduction in dopamine D2 receptor availability, measured as the binding potential of the specific D2 receptor radiotracer [123I] (S)-(-)-3-iodo-2-hydroxy-6-methoxy-N-[(1-ethyl-2-pyrrolidinyl) methyl]benzamide ([123I]IBZM). The amphetamine-induced decrease in [123I]IBZM binding potential was significantly greater in the schizophrenic group (-19.5 +/- 4.1%) compared with the control group (-7.6 +/- 2.1%). In the schizophrenic group, elevated amphetamine effect on [123I]IBZM binding potential was associated with emergence or worsening of positive psychotic symptoms. This result suggests that psychotic symptoms elicited in this experimental setting in schizophrenic patients are associated with exaggerated stimulation of dopaminergic transmission. Such an observation would be compatible with an abnormal responsiveness of dopaminergic neurons in schizophrenia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The rat retina contains dopaminergic interplexiform cells that send processes to the outer plexiform layer where dopamine is released in a light-dependent manner. We report herein that physiologically relevant concentrations of dopamine inhibited ouabain-sensitive photoreceptor oxygen consumption in dark- and light-adapted rat retinas and inhibited Na+,K+-ATPase specific activity (EC 3.6.1.37) in a rat rod outer-inner segment preparation. Experiments with the selective D1 agonist fenoldopam or D2 agonist quinpirole and experiments with dopamine plus either the D1 antagonist SCH23390 or D2/D4 antagonist clozapine showed that the inhibition of oxygen consumption and enzyme activity were mediated by D2/D4-like receptors. The amphetamine-induced release of dopamine, monitored by the inhibition of oxygen consumption, was blocked by L-2-amino-4-phosphonobutyric acid and kynurenic acid. Pharmacological and biochemical experiments determined that the IC50 values of ouabain for the alpha1-low and alpha3-high ouabain affinity isozymes of photoreceptor Na+,K+-ATPase were approximately 10(-5) and approximately 10(-7) M, respectively, and that the D2/D4-like mediated inhibition of Na+,K+-ATPase was exclusively selective for the alpha3 isozyme. The dopamine-mediated inhibition of alpha3 first occurred at 5 nM, was maximal at 100 microM (-47%), had an IC50 value of 382 +/- 23 nM, and exhibited negative cooperativity (Hill coefficient, 0.27). Prior homogenization of the rod outer-inner segment completely prevented the long-lasting inhibition, suggesting that the effect was coupled to a second messenger. Although the physiological significance of our findings to photoreceptor function is unknown, we hypothesize that these results may have relevance for the temporal tuning properties of rods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Abeta peptide of Alzheimer disease is derived from the proteolytic processing of the amyloid precursor proteins (APP), which are considered type I transmembrane glycoproteins. Recently, however, soluble forms of full-length APP were also detected in several systems including chromaffin granules. In this report we used antisera specific for the cytoplasmic sequence of APP to show that primary bovine chromaffin cells secrete a soluble APP, termed solAPPcyt, of an apparent molecular mass of 130 kDa. This APP was oversecreted from Chinese hamster ovary cells transfected with a full-length APP cDNA indicating that solAPPcyt contained both the transmembrane and Abeta sequence. Deglycosylation of solAPPcyt showed that it contained both N- and O-linked sugars, suggesting that this APP was transported through the endoplasmic reticulum-Golgi pathway. Secretion of solAPPcyt from primary chromatin cells was temperature-, time-, and energy-dependent and was stimulated by cell depolarization in a Ca2+-dependent manner. Cholinergic receptor agonists, including acetylcholine, nicotine, or carbachol, stimulated the rapid secretion of solAPPcyt, a process that was inhibited by cholinergic antagonists. Stimulation of solAPPcyt secretion was paralleled by a stimulation of secretion in catecholamines and chromogranin A, indicating that secretion of solAPPcyt was mediated by chromaffin granule vesicles. Taken together, our results show that release of the potentially amyloidogenic solAPPcyt is an active cellular process mediated by both the constitutive and regulated pathways. solAPPcyt was also detected in human cerebrospinal fluid. Combined with the neuronal physiology of chromaffin cells, our data suggest that cholinergic agonists may stimulate the release of this APP in neuronal synapses where it may exert its biological functions. Moreover, vesicular or secreted solAPPcyt may serve as a soluble precursor of Abeta.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Na+-Ca2+ exchanger and Ca2+ channel are two major sarcolemmal Ca2+-transporting proteins of cardiac myocytes. Although the Ca2+ channel is effectively regulated by protein kinase A-dependent phosphorylation, no enzymatic regulation of the exchanger protein has been identified as yet. Here we report that in frog ventricular myocytes, isoproterenol down-regulates the Na+-Ca2+ exchanger, independent of intracellular Ca2+ and membrane potential, by activation of the beta-receptor/adenylate-cyclase/cAMP-dependent cascade, resulting in suppression of transmembrane Ca2+ transport via the exchanger and providing for the well-documented contracture-suppressant effect of the hormone on frog heart. The beta-blocker propranolol blocks the isoproterenol effect, whereas forskolin, cAMP, and theophylline mimic it. In the frog heart where contractile Ca2+ is transported primarily by the Na+-Ca2+ exchanger, the beta-agonists' simultaneous enhancement of Ca2+ current, ICa, and suppression of Na+-Ca2+ exchanger current, INa-Ca would enable the myocyte to develop force rapidly at the onset of depolarization (enhancement of ICa) and to decrease Ca2+ influx (suppression of INa-Ca) later in the action potential. This unique adrenergically induced shift in the Ca2+ influx pathways may have evolved in response to paucity of the sarcoplasmic reticulum Ca2+-ATPase/phospholamban complex and absence of significant intracellular Ca2+ release pools in the frog heart.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dopamine (DA) deficiency has been implicated in Lesch-Nyhan disease (LND), a genetic disorder that is characterized by hyperuricemia, choreoathetosis, dystonia, and compulsive self-injury. To establish that DA deficiency is present in LND, the ligand WIN-35,428, which binds to DA transporters, was used to estimate the density of DA-containing neurons in the caudate and putamen of six patients with classic LND. Comparisons were made with 10 control subjects and 3 patients with Rett syndrome. Three methods were used to quantify the binding of the DA transporter so that its density could be estimated by a single dynamic positron emission tomography study. These approaches included the caudate- or putamen-to-cerebellum ratio of ligand at 80-90 min postinjection, kinetic analysis of the binding potential [Bmax/(Kd x Vd)] using the assumption of equal partition coefficients in the striatum and the cerebellum, and graphical analysis of the binding potential. Depending on the method of analysis, a 50-63% reduction of the binding to DA transporters in the caudate, and a 64-75% reduction in the putamen of the LND patients was observed compared to the normal control group. When LND patients were compared to Rett syndrome patients, similar reductions were found in the caudate (53-61%) and putamen (67-72%) in LND patients. Transporter binding in Rett syndrome patients was not significantly different from the normal controls. Finally, volumetric magnetic resonance imaging studies detected a 30% reduction in the caudate volume of LND patients. To ensure that a reduction in the caudate volume would not confound the results, a rigorous partial volume correction of the caudate time activity curve was performed. This correction resulted in an even greater decrease in the caudate-cerebellar ratio in LND patients when contrasted to controls. To our knowledge, these findings provide the first in vivo documentation of a dopaminergic reduction in LND and illustrate the role of positron emission tomography imaging in investigating neurodevelopmental disorders.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nerve growth factor (NGF) is well characterized for its neurotrophic actions on peripheral sensory and sympathetic neurons and on central cholinergic neurons of the basal forebrain. Recent evidence, however, has shown high levels of NGF to be present in a variety of biological fluids after inflammatory and autoimmune responses, suggesting that NGF is a mediator of immune interactions. Increased NGF serum levels have been reported in both humans and experimental animal models of psychological and physical stress, thus implicating NGF in neuroendocrine interactions as well. The possible source(s) and the regulatory mechanisms involved in the control of serum NGF levels, however, still remain to be elucidated. We now report the presence of both NGF gene transcripts and protein in the anterior pituitary. Immunofluorescence analysis indicated that hypophysial NGF is selectively localized in mammotroph cells and stored in secretory granules. NGF is cosecreted with prolactin from mammotroph cells by a neurotransmitter-dependent mechanism that can be pharmacologically regulated. Activation of the dopamine D2 receptor subtype, which physiologically controls prolactin release, resulted in a complete inhibition of vasoactive intestinal peptide-stimulated NGF secretion in vitro, whereas the specific D2 antagonist (-)-sulpiride stimulated NGF secretion in vivo, suggesting that the anterior pituitary is a possible source of circulating NGF. Given the increased NGF serum levels in stressful conditions and the newly recognized immunoregulatory function of this protein, NGF, together with prolactin, may thus be envisaged as an immunological alerting signal under neuronal control.