980 resultados para DNA Mutational Analysis
Resumo:
BACKGROUND: Invasion and metastasis are two important hallmarks of malignant tumors caused by complex genetic and epigenetic alterations. The present study investigated the contribution of aberrant methylation profiles of cancer related genes, APC, BIN1, BMP6, BRCA1, CST6, ESR-b, GSTP1, P14 (ARF), P16 (CDKN2A), P21 (CDKN1A), PTEN, and TIMP3, in the matched axillary lymph node metastasis in comparison to the primary tumor tissue and the adjacent normal tissue from the same breast cancer patients to identify the potential of candidate genes methylation as metastatic markers. METHODS: The quantitative methylation analysis was performed using the SEQUENOM's EpiTYPER? assay which relies on matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). RESULTS: The quantitative DNA methylation analysis of the candidate genes showed higher methylation proportion in the primary tumor tissue than that of the matched normal tissue and the differences were significant for the APC, BIN1, BMP6, BRCA1, CST6, ESR-b, P16, PTEN and TIMP3 promoter regions (P<0.05). Among those candidate methylated genes, APC, BMP6, BRCA1 and P16 displayed higher methylation proportion in the matched lymph node metastasis than that found in the normal tissue (P<0.05). The pathway analysis revealed that BMP6, BRCA1 and P16 have a role in prevention of neoplasm metastasis. CONCLUSIONS: The results of the present study showed methylation heterogeneity between primary tumors and metastatic lesion. The contribution of aberrant methylation alterations of BMP6, BRCA1 and P16 genes in lymph node metastasis might provide a further clue to establish useful biomarkers for screening metastasis.
Resumo:
Mouse mammary tumor virus is known to infect newborn mice via mother's milk. A proposed key step for viral spread to the mammary gland is by the infection of lymphocytes. We show here that although in suckling mice retroviral proteins are found in all epithelial cells of the gut, viral DNA is exclusively detectable in the Peyer's patches. As early as 5 d after birth the infection leads to a superantigen response in the Peyer's patches but not in other lymphoid organs draining the intestine. Viral DNA can be detected before the superantigen response and becomes first evident in the Peyer's patches followed by mesenteric lymph nodes and finally all lymphoid organs.
Resumo:
Using the yeast two-hybrid system, we identified the mu 2 subunit of the clathrin adaptor complex 2 as a protein interacting with the C-tail of the alpha 1b-adrenergic receptor (AR). Direct association between the alpha 1b-AR and mu 2 was demonstrated using a solid phase overlay assay. The alpha 1b-AR/mu 2 interaction occurred inside the cells, as shown by the finding that the transfected alpha 1b-AR and the endogenous mu 2 could be coimmunoprecipitated from HEK-293 cell extracts. Mutational analysis of the alpha 1b-AR revealed that the binding site for mu 2 does not involve canonical YXX Phi or dileucine motifs but a stretch of eight arginines on the receptor C-tail. The binding domain of mu 2 for the receptor C-tail involves both its N terminus and the subdomain B of its C-terminal portion. The alpha 1b-AR specifically interacted with mu 2, but not with the mu 1, mu 3, or mu 4 subunits belonging to other AP complexes. The deletion of the mu 2 binding site in the C-tail markedly decreased agonist-induced receptor internalization as demonstrated by confocal microscopy as well as by the results of a surface receptor biotinylation assay. The direct association of the adaptor complex 2 with a G protein-coupled receptor has not been reported so far and might represent a common mechanism underlying clathrin-mediated receptor endocytosis.
Resumo:
BACKGROUND: The GENCODE consortium was formed to identify and map all protein-coding genes within the ENCODE regions. This was achieved by a combination of initial manual annotation by the HAVANA team, experimental validation by the GENCODE consortium and a refinement of the annotation based on these experimental results. RESULTS: The GENCODE gene features are divided into eight different categories of which only the first two (known and novel coding sequence) are confidently predicted to be protein-coding genes. 5' rapid amplification of cDNA ends (RACE) and RT-PCR were used to experimentally verify the initial annotation. Of the 420 coding loci tested, 229 RACE products have been sequenced. They supported 5' extensions of 30 loci and new splice variants in 50 loci. In addition, 46 loci without evidence for a coding sequence were validated, consisting of 31 novel and 15 putative transcripts. We assessed the comprehensiveness of the GENCODE annotation by attempting to validate all the predicted exon boundaries outside the GENCODE annotation. Out of 1,215 tested in a subset of the ENCODE regions, 14 novel exon pairs were validated, only two of them in intergenic regions. CONCLUSION: In total, 487 loci, of which 434 are coding, have been annotated as part of the GENCODE reference set available from the UCSC browser. Comparison of GENCODE annotation with RefSeq and ENSEMBL show only 40% of GENCODE exons are contained within the two sets, which is a reflection of the high number of alternative splice forms with unique exons annotated. Over 50% of coding loci have been experimentally verified by 5' RACE for EGASP and the GENCODE collaboration is continuing to refine its annotation of 1% human genome with the aid of experimental validation.
Resumo:
BACKGROUND AND AIMS: Black cherry (Prunus serotina) is a North American tree that is rapidly invading European forests. This species was introduced first as an ornamental plant, then it was massively planted by foresters in many countries, but its origins and the process of invasion remain poorly documented. Based on a genetic survey of both native and invasive ranges, the invasion history of black cherry was investigated by identifying putative source populations and then assessing the importance of multiple introductions on the maintenance of gene diversity. METHODS: Genetic variability and structure of 23 populations from the invasive range and 22 populations from the native range were analysed using eight nuclear microsatellite loci and five chloroplast DNA regions. KEY RESULTS: Chloroplast DNA diversity suggests there were multiple introductions from a single geographic region (the north-eastern United States). A low reduction of genetic diversity was observed in the invasive range for both nuclear and plastid genomes. High propagule pressure including both the size and number of introductions shaped the genetic structure in Europe and boosted genetic diversity. Populations from Denmark, The Netherlands, Belgium and Germany showed high genetic diversity and low differentiation among populations, supporting the hypothesis that numerous introduction events, including multiple individuals and exchanges between sites, have taken place during two centuries of plantation. CONCLUSIONS: This study postulates that the invasive black cherry has originated from east of the Appalachian Mountains (mainly the Allegheny plateau) and its invasiveness in north-western Europe is mainly due to multiple introductions containing high numbers of individuals.
Resumo:
Background: Pediatric follicular lymphoma (FL) is a rare disease that differs from its adult counterpart both genetically and clinically. Excluding pediatric FL with IRF4-translocation, the genetic events associated with pediatric FL have not yet been defined. Objectives: The aim of this study was to perform a complete genetic characterization of IRF4-translocation negative pediatric follicular lymphomas to elucidate the genetic profile of these rare pediatric cases and determine common genetic alterations that could be associated to this phenotype. Design/Methods: We applied array-comparative genomic hybridization and molecular inversion probe assay adapted to formalin-fixed paraffin-embedded tissues from 18 patients aged £18 years diagnosed with FL. With the exception of one case with only focal involvement by lymphoma, the tumor cell content exceeded 50% in the evaluable samples. Eleven of 18 patients were treated according to NHL-BFM group multicenter trials whereas the remaining according to different protocols. All lacked t(14;18) translocation. Mutational analysis of TNFRSF14 gene was performed in 17 cases. Results: Only six pediatric cases displayed chromosomal imbalances, with gain/amplification of 6pter-p24.3 (including IRF4) and deletion/ copy number neutral-loss of heterozygosity in 1p36 (including TNFRSF14) being the most frequent alterations. Sequencing of the candidate gene TNFRSF14 at 1p36.32 showed nine mutations in seven cases. Conclusion: Combination of molecular and genetic features differentiated a recurrent pattern of genomic imbalances as well as of TNFRSF14 mutations in pediatric FL which together with other genetic alterations distinguishes two subsets of pediatric follicular lymphomas. The first group shows genomic aberrations and is associated with more aggressive histopathologic and clinical features. The second group lacks genetic alterations detectable with the present approaches and is associated with a more limited disease. Despite the absence of genomic aberrations, these cases resembled FL by their histopathological features.
Resumo:
The major antigen on the envelope of extracellular vaccinia virus particles is a polypeptide with an apparent molecular weight of 37,000 (p37K; G. Hiller and K. Weber, J. Virol. 55:651-659, 1985). The gene encoding p37K was mapped in the vaccinia virus genome by hybrid selection of RNA followed by in vitro translation. p37K was then identified among the in vitro translation products by immunoprecipitation with a monoclonal antibody. The gene is located close to the right-hand end of the HindIII F fragment. The corresponding region of the DNA was sequenced, and an open reading frame encoding a polypeptide of 41,748 daltons was observed. The 5' end of the mRNA, as defined by nuclease S1 analysis, maps within only a few nucleotides of the translation initiation codon. Examination of the DNA sequence around the putative initiation site of transcription revealed a characteristic sequence, TAAATG, which includes the ATG translation initiation codon and which is conserved in all but one late gene so far analyzed. It is therefore likely that this sequence is an important regulatory signal for late gene expression in vaccinia virus.
Resumo:
It has been previously described that p21 functions not only as a CDK inhibitor but also as a transcriptional co-repressor in some systems. To investigate the roles of p21 in transcriptional control, we studied the gene expression changes in two human cell systems. Using a human leukemia cell line (K562) with inducible p21 expression and human primary keratinocytes with adenoviral-mediated p21 expression, we carried out microarray-based gene expression profiling. We found that p21 rapidly and strongly repressed the mRNA levels of a number of genes involved in cell cycle and mitosis. One of the most strongly down-regulated genes was CCNE2 (cyclin E2 gene). Mutational analysis in K562 cells showed that the N-terminal region of p21 is required for repression of gene expression of CCNE2 and other genes. Chromatin immunoprecipitation assays indicated that p21 was bound to human CCNE2 and other p21-repressed genes gene in the vicinity of the transcription start site. Moreover, p21 repressed human CCNE2 promoter-luciferase constructs in K562 cells. Bioinformatic analysis revealed that the CDE motif is present in most of the promoters of the p21-regulated genes. Altogether, the results suggest that p21 exerts a repressive effect on a relevant number of genes controlling S phase and mitosis. Thus, p21 activity as inhibitor of cell cycle progression would be mediated not only by the inhibition of CDKs but also by the transcriptional down-regulation of key genes.
Resumo:
An increased expression of nitric oxide synthase (NOS) has been observed in human colon carcinoma cell lines as well as in human gynecological, breast, and central nervous system tumors. This observation suggests a pathobiological role of tumor-associated NO production. Hence, we investigated NOS expression in human colon cancer in respect to tumor staging, NOS-expressing cell type(s), nitrotyrosine formation, inflammation, and vascular endothelial growth factor expression. Ca2+-dependent NOS activity was found in normal colon and in tumors but was significantly decreased in adenomas (P < 0.001) and carcinomas (Dukes' stages A-D: P < 0.002). Ca2+-independent NOS activity, indicating inducible NOS (NOS2), is markedly expressed in approximately 60% of human colon adenomas (P < 0.001 versus normal tissues) and in 20-25% of colon carcinomas (P < 0.01 versus normal tissues). Only low levels were found in the surrounding normal tissue. NOS2 activity decreased with increasing tumor stage (Dukes' A-D) and was lowest in colon metastases to liver and lung. NOS2 was detected in tissue mononuclear cells (TMCs), endothelium, and tumor epithelium. There was a statistically significant correlation between NOS2 enzymatic activity and the level of NOS2 protein detected by immunohistochemistry (P < 0.01). Western blot analysis of tumor extracts with Ca2+-independent NOS activity showed up to three distinct NOS2 protein bands at Mr 125,000-Mr 138,000. The same protein bands were heavily tyrosine-phosphorylated in some tumor tissues. TMCs, but not the tumor epithelium, were immunopositive using a polyclonal anti-nitrotyrosine antibody. However, only a subset of the NOS2-expressing TMCs stained positively for 3-nitrotyrosine, which is a marker for peroxynitrite formation. Furthermore, vascular endothelial growth factor expression was detected in adenomas expressing NOS2. These data are consistent with the hypothesis that excessive NO production by NOS2 may contribute to the pathogenesis of colon cancer progression at the transition of colon adenoma to carcinoma in situ.
Resumo:
The different Bartonella species can cause various human infections such as cat scratch disease, chronic bacteremia (homeless patient with nonspecific symptom), endocarditis, bacillary angiomatosis, peliosis, and Carrion's disease. Diagnostic approaches include serology, culture and molecular approaches. PCR is especially useful on lymph nodes biopsies from patients with cat-scratch disease and on valvular samples taken from culture-negative endocarditis. Serology exhibits a very high sensitivity in the latter situation. The treatment should be chosen according to the clinical presentation.
Resumo:
The aim of the present study was to examine the feasibility of DNA microarray technology in an attempt to construct an evaluation system for determining gas toxicity using high-pressure conditions, as it is well known that pressure increases the concentration of a gas. As a first step, we used yeast (Saccharomyces cerevisiae) as the indicator organism and analyzed the mRNA expression profiles after exposure of yeast cells to nitrogen gas. Nitrogen gas was selected as a negative control since this gas has low toxicity. Yeast DNA microarray analysis revealed induction of genes whose products were localized to the membranes, and of genes that are involved in or contribute to energy production. Furthermore, we found that nitrogen gas significantly affected the transport system in the cells. Interestingly, nitrogen gas also resulted in induction of cold-shock responsive genes. These results suggest the possibility of applying yeast DNA microarray to gas bioassays up to 40 MPa. We therefore think that "bioassays" are ideal for use in environmental control and protection studies.
Resumo:
Genotype E of hepatitis B virus (HBV) has not been described in Brazil and is found mainly in Africa. Genotype A is the most prevalent in Brazil, and genotypes B, C, D, and F have already been reported. We report here an HBV genotype E-infected patient and some characterization of surface (S) protein, DNA polymerase (P) and precore/core (preC/C) coding regions based on the viral genome. The patient is a 31-year-old black man with chronic hepatitis B who was born and raised in Angola. He has been followed by a hepatologist in São Paulo, Brazil, since November 2003, and he is a frequent traveler to Latin America, Africa, and Europe. In 2003, he was diagnosed with HBV infection and started treatment with lamivudine with the later addition of adefovir dipivoxil. No known risk factor was identified. Serologically, he is HBsAg and anti-HBe positive, but HBeAg and anti-HBs negative. DNA sequence analysis of the S/P region confirmed that this patient is infected with genotype E, subtype ayw4. The preC/C region showed G1896A and G1899A mutations but no mutations in the basal core promoter. Nucleotide substitutions common in genotype E were also observed (C1772, T1858 and A1757). Although this is not an autochthonous case and there is no evidence of further spread, the description of this case in Brazil highlights the current risk of viral genotypes spreading with unprecedented speed due to constant travel around the world.
Resumo:
Lactobacilli isolated from the vaginal tract of women with and without bacterial vaginosis (BV) were identified and characterized for the production of antagonists. Bacterial samples were isolated from healthy women (N = 16), from patients with clinical complaints but without BV (N = 30), and from patients with BV (N = 32). Identification was performed using amplified ribosomal DNA restriction analysis. Production of antagonistic compounds was evaluated by the double-layer diffusion technique using Gram-positive (N = 9) and Gram-negative bacteria (N = 6) as well as yeast (N = 5) as indicator strains. Of a total of 147 isolates, 133 were identified as pertaining to the genus Lactobacillus. Lactobacillus crispatus was the species most frequently recovered, followed by L. johnsonii and L. jensenii. Statistical analysis showed that L. crispatus was more frequent in individuals without BV (P < 0.05). A higher production of antagonists was noted in L. crispatus isolates from healthy women (P < 0.05). More acidic local pH and higher H2O2 production by isolated lactobacilli from healthy women suggest these mechanisms as the possible cause of this antagonism. In conclusion, a significant correlation was detected between the presence and antagonistic properties of certain species of Lactobacillus and the clinical status of the patients.
Resumo:
The cloned dihydrofolate reductase gene of Saccharomyces cerevisiae (DFR 1) is expressed in Escherichia coli. Bacterial strain JF1754 transformed with plasmids containing DFR 1 is at least 5X more resistant to inhibition by the folate antagonist trimethoprim. Expression of yeast DFR 1 in E. coli suggests it is likely that the gene lacks intervening sequences. The 1.8 kbp DNA fragment encoding yeast dhfr activity probably has its own promotor, as the gene is expressed in both orientations in E. coli. Expression of the yeast dhfr gene cloned into M13 viral vectors allowed positive selection of DFR 1 - M13 bacterial transfectants in medium supplemented with trimethoprim. A series of nested deletions generated by nuclease Bal 31 digestion and by restriction endonuclease cleavage of plasmids containing DFR 1 physically mapped the gene to a 930 bp region between the Pst 1 and Sal 1 cut sites. This is consistent with the 21,000 molecular weight attributed to yeast dhfr in previous reports. From preliminary DNA sequence analysis of the dhfr DNA fragment the 3' terminus of DFR 1 was assigned to a position 27 nucleotides from the Eco Rl cut site on the Bam Hi - Eco Rl DNA segment. Several putative yeast transcription termination consensus sequences were identified 3' to the opal stop codon. DFR 1 is expressed in yeast and it confers resistance to the antifolate methotrexate when the gene is present in 2 - 10 copies per cell. Plasmid-dependent resistance to methotrexate is also observed in a rad 6 background although the effect is somewhat less than that conferred to wild-type or rad 18 cells. Integration of DFR 1 into the yeast genome showed an intermediate sensitivity to folate antagonists. This may suggest a gene dosage effect. No change in petite induction in these yeast strains was observed in transformed cells containing yeast dhfr plasmids. The sensitivity of rad 6 , rad 18 and wild-type cell populations to trimethoprim were unaffected by the presence of DFR 1 in transformants. Moreover, trimethoprim did not induce petites in any strain tested, which normally results if dhfr is inhibited by other antifolates such as methotrexate. This may suggest that the dhfr enzyme is not the only possible target of trimethoprim in yeast. rad 6 mutants showed a very low level of spontaneous petite formation. Methotrexate failed to induce respiratory deficient mutants in this strain which suggested that rad 6 might be an obligate grande. However, ethidium bromide induced petites to a level approximately 50% of that exhibited by wild-type and rad 18 strains.