975 resultados para DEPENDENT QUANTUM PROBLEMS
Resumo:
The psychiatric and psychosocial evaluation of the heart transplant candidate can identify particular predictors for postoperative problems. These factors, as identified during the comprehensive evaluation phase, provide an assessment of the candidate in context of the proposed transplantation protocol. Previous issues with compliance, substance abuse, and psychosis are clear indictors of postoperative problems. The prolonged waiting list time provides an additional period to evaluate and provide support to patients having a terminal disease who need a heart transplant, and are undergoing prolonged hospitalization. Following transplantation, the patient is faced with additional challenges of a new self-image, multiple concerns, anxiety, and depression. Ultimately, the success of the heart transplantation remains dependent upon the recipient's ability to cope psychologically and comply with the medication regimen. The limited resource of donor hearts and the high emotional and financial cost of heart transplantation lead to an exhaustive effort to select those patients who will benefit from the improved physical health the heart transplant confers.
Resumo:
We give an a priori analysis of a semi-discrete discontinuous Galerkin scheme approximating solutions to a model of multiphase elastodynamics which involves an energy density depending not only on the strain but also the strain gradient. A key component in the analysis is the reduced relative entropy stability framework developed in Giesselmann (SIAM J Math Anal 46(5):3518–3539, 2014). The estimate we derive is optimal in the L∞(0,T;dG) norm for the strain and the L2(0,T;dG) norm for the velocity, where dG is an appropriate mesh dependent H1-like space.
Resumo:
In this article we prove new results concerning the existence and various properties of an evolution system U(A+B)(t, s)0 <= s <= t <= T generated by the sum -(A(t) + B(t)) of two linear, time-dependent, and generally unbounded operators defined on time-dependent domains in a complex and separable Banach space B. In particular, writing L(B) for the algebra of all linear bounded operators on B, we can express U(A+B)(t, s)0 <= s <= t <= T as the strong limit in C(8) of a product of the holomorphic contraction semigroups generated by -A (t) and - B(t), respectively, thereby proving a product formula of the Trotter-Kato type under very general conditions which allow the domain D(A(t) + B(t)) to evolve with time provided there exists a fixed set D subset of boolean AND(t is an element of)[0,T] D(A(t) + B(t)) everywhere dense in B. We obtain a special case of our formula when B(t) = 0, which, in effect, allows us to reconstruct U(A)(t, s)0 <=(s)<=(t)<=(T) very simply in terms of the semigroup generated by -A(t). We then illustrate our results by considering various examples of nonautonomous parabolic initial-boundary value problems, including one related to the theory of timedependent singular perturbations of self-adjoint operators. We finally mention what we think remains an open problem for the corresponding equations of Schrodinger type in quantum mechanics.
Resumo:
In this article dedicated to Professor V. Lakshmikantham on the occasion of the celebration of his 84th birthday, we announce new results concerning the existence and various properties of an evolution system UA+B(t, s)(0 <= s <= t <= T) generated by the sum -(A(t)+B(t)) of two linear, time-dependent and generally unbounded operators defined on time-dependent domains in a complex and separable Banach space B. In particular, writing G(B) for the algebra of all linear bounded operators on B, we can express UA+B(t, s)(0 <= s <= t <= T) as the strong limit in L(B) of a product of the holomorphic contraction semigroups generated by -A(t) and -B(t), thereby getting a product formula of the Trotter-Kato type under very general conditions which allow the domain D(A(t)+B(t)) to evolve with time provided there exists a fixed set D subset of boolean AND D-t epsilon[0,D-T](A(t)+B(t)) everywhere dense in B. We then mention several possible applications of our product formula to various classes of non-autonomous parabolic initial-boundary value problems, as well as to evolution problems of Schrodinger type related to the theory of time-dependent singular perturbations of self-adjoint operators in quantum mechanics. We defer all the proofs and all the details of the applications to a separate publication. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
We present magnetotransport studies of high-density triple quantum well samples with different barrier widths. Because of electron transitions between three occupied 2D subbands, the magneto-resistance shows magneto-intersubband oscillations whose periodicity is determined by the subband separation energies. Temperature-dependent measurements allow us to extract quantum lifetime of electrons. A theoretical consideration of the observed phenomenon is also presented. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
We report in detail oscillatory magnetoresistance in double quantum wells under microwave irradiation. The experimental investigation contains measurements of frequency, power and temperature dependence. In theory, the observed interference oscillations are explained in terms of the influence of subband coupling on the frequency-dependent photoinduced part of the electron distribution function. Thus, the magnetoresistance shows the interference of magneto-intersubband and conventional microwave induced resistance oscillations.
Resumo:
We discuss the possibility of implementing a universal quantum XOR gate by using two coupled quantum dots subject to external magnetic fields that are parallel and slightly different. We consider this system in two different field configurations. In the first case, parallel external fields with the intensity difference at each spin being proportional to the time-dependent interaction between the spins. A general exact solution describing this system is presented and analyzed to adjust field parameters. Then we consider parallel fields with intensity difference at each spin being constant and the interaction between the spins switching on and off adiabatically. In both cases we adjust characteristics of the external fields (their intensities and duration) in order to have the parallel pulse adequate for constructing the XOR gate. In order to provide a complete theoretical description of all the cases, we derive relations between the spin interaction, the inter-dot distance, and the external field. (C) 2008 WILEYNCH Verlag GmbH & Co. KGaA. Weinheim.
Resumo:
In this work, we identify the set of time-dependent pure states building the statistical mixture to which a system, initially in a pure state, is driven by the reservoir. This set of time-dependent pure states, composing what we term a pure basis, are those that diagonalize the reduced density operator of the system. Next, we show that the evolution of the pure-basis states reveals an interesting phenomenon as the system, after decoherence, evolves toward the equilibrium: the spontaneous recoherence of quantum states. Around our defined recoherence time, the statistical mixture associated with a special kind of initial states termed even-symmetric, spontaneously undergoes a recoherence process, by which the initial state of the system emerges from the mixture except for its reduced excitation drained into the reservoir. This phenomenon reveals that the reservoir only shuffle the original information carried out by the initial state of the system instead of erasing it. Moreover, as the spontaneously recohered state occurs only for asymptotic time, we also present a protocol to extract it from the mixture through specific projective measurements. The password to retrieve the original information stems is the knowledge of both the initial state itself and the associated pure basis. A definition of the decoherence time of an N-state superposition is also presented.
Resumo:
We generalize the standard linear-response (Kubo) theory to obtain the conductivity of a system that is subject to a quantum measurement of the current. Our approach can be used to specifically elucidate how back-action inherent to quantum measurements affects electronic transport. To illustrate the utility of our general formalism, we calculate the frequency-dependent conductivity of graphene and discuss the effect of measurement-induced decoherence on its value in the dc limit. We are able to resolve an ambiguity related to the parametric dependence of the minimal conductivity.
Resumo:
We present a new procedure to construct the one-dimensional non-Hermitian imaginary potential with a real energy spectrum in the context of the position-dependent effective mass Dirac equation with the vector-coupling scheme in 1 + 1 dimensions. In the first example, we consider a case for which the mass distribution combines linear and inversely linear forms, the Dirac problem with a PT-symmetric potential is mapped into the exactly solvable Schrodinger-like equation problem with the isotonic oscillator by using the local scaling of the wavefunction. In the second example, we take a mass distribution with smooth step shape, the Dirac problem with a non-PT-symmetric imaginary potential is mapped into the exactly solvable Schrodinger-like equation problem with the Rosen-Morse potential. The real relativistic energy levels and corresponding wavefunctions for the bound states are obtained in terms of the supersymmetric quantum mechanics approach and the function analysis method.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Recently, we constructed an energy-dependent point interaction (EDPI) in its most general form in one-dimensional quantum mechanics. In this paper, we show that stationary solutions of the Schrodinger equation with the EDPI form a complete set. Then any nonstationary solution of the time-dependent Schrodinger equation can be expressed as a linear combination of stationary solutions. This, however, does not necessarily mean that the EDPI is self-adjoint and the time-development of the nonstationary state is unitary. The EDPI is self-adjoint provided that the stationary solutions are all orthogonal to one another. We illustrate situations in which this orthogonality condition is not satisfied.
Resumo:
Motion of a nonrelativistic particle on a cone with a magnetic flux running through the cone axis (a flux cone) is studied. It is expressed as the motion of a particle moving on the Euclidean plane under the action of a velocity-dependent force. The probability fluid (quantum flow) associated with a particular stationary state is studied close to the singularity, demonstrating nontrivial Aharonov-Bohm effects. For example, it is shown that, near the singularity, quantum flow departs from classical flow. In the context of the hydrodynamical approach to quantum mechanics, quantum potential due to the conical singularity is determined, and the way it affects quantum flow is analyzed. It is shown that the winding number of classical orbits plays a role in the description of the quantum Bow. The connectivity of the configuration space is also discussed.