962 resultados para DC power transmission
Resumo:
Power system real time security assessment is one of the fundamental modules of the electricity markets. Typically, when a contingency occurs, it is required that security assessment and enhancement module shall be ready for action within about 20 minutes’ time to meet the real time requirement. The recent California black out again highlighted the importance of system security. This paper proposed an approach for power system security assessment and enhancement based on the information provided from the pre-defined system parameter space. The proposed scheme opens up an efficient way for real time security assessment and enhancement in a competitive electricity market for single contingency case
Resumo:
This study evaluated four polymorphisms located in the DC-SIGN (CD209) gene promoter region (positions -336, -332 -201 and -139) in DNA samples from four Brazilian ethnic groups (Caucasians, Afro-Brazilian, Asians and Amerindians) to establish the population distribution of these single-nucleotide polymorphisms (SNPs) and correlated DC-SIGN polymorphisms and infection in samples from human T-cell lymphotropic virus type 1 (HTLV-1)-infected individuals. To identify CD209 SNPs, 452 bp of the CD209 promoter region were sequenced and the genotype and allelic frequencies were evaluated. This is the first study to show genetic polymorphism in the CD209 gene in distinct Brazilian ethnic groups with the distribution of allelic and genotypic frequency. The results showed that -336A and -139A SNPs were quite common in Asians and that the -201T allele was not observed in Caucasians, Asians or Amerindians. No significant differences were observed between individuals with HTLV-1 disease and asymptomatic patients. However, the -336A variant was more frequent in HTLV-1 -infected patients [HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP), 80%; healthy asymptomatic HTLV-1 carriers, 90 %] than in the control group (70 %) [P=0.0197, odds ratio (OR)=2.511, 95 % confidence interval (CI)=1.218-5.179). In addition, the -139A allele was found to be associated with protection against HTLV-1 infection (P=0.0037, OR=0.3758, 95% CI=0.1954-0.7229) when the HTLV-1 -infected patients as a whole were compared with the healthy-control group. These observations suggest that the -139A allele may be associated with HTLV-1 infection, although no significant association was observed among asymptomatic and HAM/TSP patients. In conclusion, the variation observed in SNPs -336 and -139 indicates that this lectin may be of crucial importance in the susceptibility/transmission of HTLV-1 infections.
Resumo:
Frequency deviation is a common problem for power system signal processing. Many power system measurements are carried out in a fixed sampling rate assuming the system operates in its nominal frequency (50 or 60 Hz). However, the actual frequency may deviate from the normal value from time to time due to various reasons such as disturbances and subsequent system transients. Measurement of signals based on a fixed sampling rate may introduce errors under such situations. In order to achieve high precision signal measurement appropriate algorithms need to be employed to reduce the impact from frequency deviation in the power system data acquisition process. This paper proposes an advanced algorithm to enhance Fourier transform for power system signal processing. The algorithm is able to effectively correct frequency deviation under fixed sampling rate. Accurate measurement of power system signals is essential for the secure and reliable operation of power systems. The algorithm is readily applicable to such occasions where signal processing is affected by frequency deviation. Both mathematical proof and numerical simulation are given in this paper to illustrate robustness and effectiveness of the proposed algorithm. Crown Copyright (C) 2003 Published by Elsevier Science B.V. All rights reserved.
Resumo:
The intensive use of semiconductor devices enabled the development of a repetitive high-voltage pulse-generator topology from the dc voltage-multiplier (VM) concept. The proposed circuit is based on an odd VM-type circuit, where a number of dc capacitors share a common connection with different voltage ratings in each one, and the output voltage comes from a single capacitor. Standard VM rectifier and coupling diodes are used for charging the energy-storing capacitors, from an ac power supply, and two additional on/off semiconductors in each stage, to switch from the typical charging VM mode to a pulse mode with the dc energy-storing capacitors connected in series with the load. Results from a 2-kV experimental prototype with three stages, delivering a 10-mu s pulse with a 5-kHz repetition rate into a resistive load, are discussed. Additionally, the proposed circuit is compared against the solid-state Marx generator topology for the same peak input and output voltages.
Resumo:
This paper presents a new generalized solution for DC bus capacitors voltage balancing in back-to-back m level diode-clamped multilevel converters connecting AC networks. The solution is based on the DC bus average power flow and exploits the switching configuration redundancies. The proposed balancing solution is particularized for the back-to-back multilevel structure with m=5 levels. This back-to-back converter is studied working with bidirectional power flow, connecting an induction machine to the power grid.
Resumo:
Implementing monolithic DC-DC converters for low power portable applications with a standard low voltage CMOS technology leads to lower production costs and higher reliability. Moreover, it allows miniaturization by the integration of two units in the same die: the power management unit that regulates the supply voltage for the second unit, a dedicated signal processor, that performs the functions required. This paper presents original techniques that limit spikes in the internal supply voltage on a monolithic DC-DC converter, extending the use of the same technology for both units. These spikes are mainly caused by fast current variations in the path connecting the external power supply to the internal pads of the converter power block. This path includes two parasitic inductances inbuilt in bond wires and in package pins. Although these parasitic inductances present relative low values when compared with the typical external inductances of DC-DC converters, their effects can not be neglected when switching high currents at high switching frequency. The associated overvoltage frequently causes destruction, reliability problems and/or control malfunction. Different spike reduction techniques are presented and compared. The proposed techniques were used in the design of the gate driver of a DC-DC converter included in a power management unit implemented in a standard 0.35 mu m CMOS technology.
Resumo:
A newly developed solid-state repetitive high-voltage (HV) pulse modulator topology created from the mature concept of the d.c. voltage multiplier (VM) is described. The proposed circuit is based in a voltage multiplier type circuit, where a number of d.c. capacitors share a common connection with different voltage rating in each one. Hence, besides the standard VM rectifier and coupling diodes, two solid-state on/off switches are used, in each stage, to switch from the typical charging VM mode to a pulse mode with the d.c. capacitors connected in series with the load. Due to the on/off semiconductor configuration, in half-bridge structures, the maximum voltage blocked by each one is the d.c. capacitor voltage in each stage. A 2 kV prototype is described and the results are compared with PSPICE simulations.
Resumo:
Several didactic modules for an electric machinery laboratory are presented. The modules are dedicated for DC machinery control and get their characteristic curves. The didactic modules have a front panel with power and signal connectors and can be configurable for any DC motor type. The three-phase bridge inverter proposed is one of the most popular topologies and is commercially available in power package modules. The control techniques and power drives were designed to satisfy static and dynamic performance of DC machines. Each power section is internally self-protected against misconnections and short-circuits. Isolated output signals of current and voltage measurements are also provided, adding versatility for use either in didactic or research applications. The implementation of such modules allowed experimental confirmation of the expected performance.
Resumo:
In a liberalized electricity market, the Transmission System Operator (TSO) plays a crucial role in power system operation. Among many other tasks, TSO detects congestion situations and allocates the payments of electricity transmission. This paper presents a software tool for congestion management and transmission price determination in electricity markets. The congestion management is based on a reformulated Optimal Power Flow (OPF), whose main goal is to obtain a feasible solution for the re-dispatch minimizing the changes in the dispatch proposed by the market operator. The transmission price computation considers the physical impact caused by the market agents in the transmission network. The final tariff includes existing system costs and also costs due to the initial congestion situation and losses costs. The paper includes a case study for the IEEE 30 bus power system.
Resumo:
This paper presents a direct power control (DPC) for three-phase matrix converters operating as unified power flow controllers (UPFCs). Matrix converters (MCs) allow the direct ac/ac power conversion without dc energy storage links; therefore, the MC-based UPFC (MC-UPFC) has reduced volume and cost, reduced capacitor power losses, together with higher reliability. Theoretical principles of direct power control (DPC) based on sliding mode control techniques are established for an MC-UPFC dynamic model including the input filter. As a result, line active and reactive power, together with ac supply reactive power, can be directly controlled by selecting an appropriate matrix converter switching state guaranteeing good steady-state and dynamic responses. Experimental results of DPC controllers for MC-UPFC show decoupled active and reactive power control, zero steady-state tracking error, and fast response times. Compared to an MC-UPFC using active and reactive power linear controllers based on a modified Venturini high-frequency PWM modulator, the experimental results of the advanced DPC-MC guarantee faster responses without overshoot and no steady-state error, presenting no cross-coupling in dynamic and steady-state responses.
Resumo:
Congestion management of transmission power systems has achieve high relevance in competitive environments, which require an adequate approach both in technical and economic terms. This paper proposes a new methodology for congestion management and transmission tariff determination in deregulated electricity markets. The congestion management methodology is based on a reformulated optimal power flow, whose main goal is to obtain a feasible solution for the re-dispatch minimizing the changes in the transactions resulting from market operation. The proposed transmission tariffs consider the physical impact caused by each market agents in the transmission network. The final tariff considers existing system costs and also costs due to the initial congestion situation and losses. This paper includes a case study for the 118 bus IEEE test case.
Resumo:
This paper describes an architecture conceived to integrate Power Sys-tems tools in a Power System Control Centre, based on an Ambient Intelligent (AmI) paradigm. This architecture is an instantiation of the generic architecture proposed in [1] for developing systems that interact with AmI environments. This architecture has been proposed as a consequence of a methodology for the inclu-sion of Artificial Intelligence in AmI environments (ISyRAmI - Intelligent Sys-tems Research for Ambient Intelligence). The architecture presented in the paper will be able to integrate two applications in the control room of a power system transmission network. The first is SPARSE expert system, used to get diagnosis of incidents and to support power restoration. The second application is an Intelligent Tutoring System (ITS) incorporating two training tools. The first tutoring tool is used to train operators to get the diagnosis of incidents. The second one is another tutoring tool used to train operators to perform restoration procedures.
Resumo:
Cyber-Physical Intelligence is a new concept integrating Cyber-Physical Systems and Intelligent Systems. The paradigm is centered in incorporating intelligent behavior in cyber-physical systems, until now too oriented to the operational technological aspects. In this paper we will describe the use of Cyber-Physical Intelligence in the context of Power Systems, namely in the use of Intelligent SCADA (Supervisory Control and Data Acquisition) systems at different levels of the Power System, from the Power Generation, Transmission, and Distribution Control Centers till the customers houses.
Resumo:
Fast Field Cycling (FFC) Nuclear Magnetic Resonance (NMR) relaxometers require controlled current sources in order to get accurate flux density with respect to its magnet. The main elements of the proposed solution are a power semiconductor, a DC voltage source and the magnet. The power semiconductor is commanded in order to get a linear control of the flux density. To implement the flux density control, a Hall Effect sensor is used. Furthermore, the dynamic behavior of the current source is analyzed and compared when using a PI controller and a PD2I controller.
Resumo:
Fast Field Cycling (FFC) Nuclear Magnetic Resonance (NMR) relaxometers require controlled current sources in order to get accurate flux density with respect to its magnet. The main elements of the proposed solution are a power semiconductor, a DC voltage source and the magnet. The power semiconductor is commanded in order to get a linear control of the flux density. To implement the flux density control, a Hall Effect sensor is used. Furthermore, the dynamic behavior of the current source is analyzed and compared when using a PI controller and a PD2I controller.