976 resultados para Cylindrical shapes


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The peg-in-hole insertion and adjustment operation is one of the most common tasks in the robotic and automatic assembly processes. Fine motion strategies associated with adjustment operations on a peg-in-hole are fundamental manipulations that can be utilised in dynamic assembly and reconfigurable workholding or fixturing systems. This paper presents a comprehensive study of robotic-based height adjustment of a cylindrical pair based on maintaining minimum contact forces between the links. The outer link is held by the end-effector of a six-DOF (Degrees of freedom) serial articulated robot manipulator. The environment represented by the inner link can be either static or dynamic. A force-based approach and a d value approach are established to determine the type of contact that exists between the links of a cylindrical pair, and to extract control parameters. Based on the comparison and analysis of these two approaches, a hybrid methodology is established by combining a d value approach with a force-based approach for contact state determination. Formulations capable of extracting necessary control parameters, which ensure minimum contact forces between the links, are established from both planar and spatial viewpoints under both static and dynamic environmental conditions. Experimental results demonstrate the effectiveness of the proposed methodology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To achieve the greatest peak capacity in two-dimensional high performance liquid chromatography (2D-HPLC) a gradient should be operated in both separation dimensions. However, it is known that when an injection solvent that is stronger than the initial mobile phase composition is deleterious to peak performance, thus causing problems when cutting a portion from one gradient into another. This was overcome when coupling hydrophilic interaction with reversed phase chromatography by introducing a counter gradient that changed the solvent strength of the second dimension injection. It was found that an injection solvent composition of 20% acetonitrile in water gave acceptable results in one-dimensional simulations with an initial composition of 5% acetonitrile. When this was transferred to a 2D-HPLC separation of standards it was found that a marked improvement in peak shape was gained for the moderately retained analytes (phenol and dimethyl phthalate), some improvement for the weakly retained caffeine and very little change for the strongly retained n-propylbenzene and anthracene which already displayed good chromatographic profiles. This effect was transferred when applied to a 2D-HPLC separation of a coffee extract where the indecipherable retention profile was transformed to a successful application multidimensional chromatography with peaks occupying 71% of the separation space according to the geometric approach to factor analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Titanium alloys are widely used in various engineering design application due to its superior material properties. The traditional manufacturing of titanium products is always difficult, time consuming, high material wastage and manufacturing costs. Selective laser melting (SLM), an additive manufacturing technology has widely gained attention due to its capability to produce near net shape components with less production time. In this technical paper,microstructure,chemical composition,tensile properties and hardness are studied for the wrought and additive manufactured SLM cylindrical bar. Microstructure,mechanical properties and hardness were studied in both the longitudinal and transverse directions of the bar to study the effect of orientation. It was found that additive manufactured bar have higher yield strength, ultimate tensile strength and hardness than the wrought bar. For both conventional and SLM test samples, the yield strength, ultimate tensile strength and hardness was found to be high in the transverse direction. The difference in the properties can be attributed to the difference in microstructure as a result of processing conditions. The tensile fracture area was quantified by careful examination of the fracture surfaces in the scanning electron microscope.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The low accuracy rates of textshape dividers for digital ink diagrams are hindering their use in real world applications. While recognition of handwriting is well advanced and there have been many recognition approaches proposed for hand drawn sketches, there has been less attention on the division of text and drawing ink. Feature based recognition is a common approach for textshape division. However, the choice of features and algorithms are critical to the success of the recognition. We propose the use of data mining techniques to build more accurate textshape dividers. A comparative study is used to systematically identify the algorithms best suited for the specific problem. We have generated dividers using data mining with diagrams from three domains and a comprehensive ink feature library. The extensive evaluation on diagrams from six different domains has shown that our resulting dividers, using LADTree and LogitBoost, are significantly more accurate than three existing dividers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The work reported here involved an investigation into the grinding process, one of the last finishing processes carried out on a production line. Although several input parameters are involved in this process, attention today focuses strongly on the form and amount of cutting fluid employed, since these substances may be seriously pernicious to human health and to the environment, and involve high purchasing and maintenance costs when utilized and stored incorrectly. The type and amount of cutting fluid used directly affect some of the main output variables of the grinding process which are analyzed here, such as tangential cutting force, specific grinding energy, acoustic emission, diametrical wear, roughness, residual stress and scanning electron microscopy. To analyze the influence of these variables, an optimised fluid application methodology was developed (involving rounded 5, 4 and 3 turn diameter nozzles and high fluid application pressures) to reduce the amount of fluid used in the grinding process and improve its performance in comparison with the conventional fluid application method (of diffuser nozzles and lower fluid application pressure). To this end, two types of cutting fluid (a 5% synthetic emulsion and neat oil) and two abrasive tools (an aluminium oxide and a superabrasive CBN grinding wheel) were used. The results revealed that, in every situation, the optimised application of cutting fluid significantly improved the efficiency of the process, particularly the combined use of neat oil and CBN grinding wheel. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Over the years, grinding has been considered one of the most important manufacturing processes. Grinding is a high precision process, and the loss of a single workpiece in this stage of the production is unacceptable, fir the value added to the material is very high due to many processes it has already undergone prior to grinding. This study aims to contribute toward the development of an experimental methodology whereby the pressure and speed of the air layer produced by the high rotation of the grinding wheel is evaluated with and without baffles, i.e., in an optimized grinding operation and in a traditional one. Tests were also carried out with steel samples to check the difference in grinding wheel wear with and without the use of baffles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Klein - Gordon and the Dirac equations with vector and scalar potentials are investigated under a more general condition, V-v = V-s + constant. These isospectral problems are solved in the case of squared trigonometric potential functions and bound states for either particles or antiparticles are found. The eigenvalues and eigenfunctions are discussed in some detail. It is revealed that a spin-0 particle is better localized than a spin-1/2 particle when they have the same mass and are subjected to the same potentials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Klein - Gordon and the Dirac equations with vector and scalar potentials are investigated under a more general condition, V(v) + V(s) = constant. These intrinsically relativistic and isospectral problems are solved in the case of squared hyperbolic potential functions and bound states for either particles or antiparticles are found. The eigenvalues and eigenfuntions are discussed in some detail and the effective Compton wavelength is revealed to be an important physical quantity. It is revealed that a boson is better localized than a fermion when they have the same mass and are subjected to the same potentials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Classical models of gravity gradient, solar radiation, aerodynamic and magnetic torques acting on a circular cylinder satellite. The magnitude of each such are compared with parameterization in terms of the dimensions of the satellite and its altitude in relation to the Earth's surface. Two different satellite data are considered. The results agree with the classical results and show that for altitude between 0 and 800 km the gravity gradient, aerodynamic and magnetic torques decrease with altitude while the solar radiation torque is almost independent of the altitude. The relative importance of these torques depends on the size, mass, moments of inertia and altitude of the satellite. The results can be useful to propagate the satellite attitude, to satellite missions analysis and to validate the analytical approaches. (C) 2003 COSPAR. Published by Elsevier B.V. Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A first order analytical model for optimal small amplitude attitude maneuvers of spacecraft with cylindrical symmetry in an elliptical orbits is presented. The optimization problem is formulated as a Mayer problem with the control torques provided by a power limited propulsion system. The state is defined by Seffet-Andoyer's variables and the control by the components of the propulsive torques. The Pontryagin Maximum Principle is applied to the problem and the optimal torques are given explicitly in Serret-Andoyer's variables and their adjoints. For small amplitude attitude maneuvers, the optimal Hamiltonian function is linearized around a reference attitude. A complete first order analytical solution is obtained by simple quadrature and is expressed through a linear algebraic system involving the initial values of the adjoint variables. A numerical solution is obtained by taking the Euler angles formulation of the problem, solving the two-point boundary problem through the shooting method, and, then, determining the Serret-Andoyer variables through Serret-Andoyer transformation. Numerical results show that the first order solution provides a good approximation to the optimal control law and also that is possible to establish an optimal control law for the artificial satellite's attitude. (C) 2003 COSPAR. Published by Elsevier B.V. Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The quantized vortex states of a weakly interacting Bose-Einstein condensate of atoms with attractive interatomic interaction in an axially symmetric harmonic oscillator trap are investigated using the numerical solution of the time-dependent Gross-Pitaevskii equation obtained by the semi-implicit Crank-Nicholson method. The collapse of the condensate is studied in the presence of deformed traps with the larger frequency along either the radial or the axial direction. The critical number of atoms for collapse is calculated as a function of the vortex quantum number L. The critical number increases with increasing angular momentum L of the cortex state but tends to saturate for large L.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Este trabalho teve como objetivo avaliar a influência das formas do relevo na variabilidade espacial de atributos físicos e suas relações com a mineralogia da argila de um Latossolo Vermelho eutroférrico, utilizando a técnica da geoestatística. Os solos foram amostrados nos pontos de cruzamento de uma malha, com intervalos regulares de 10 m, nas profundidades de 0,0-0,2 m, 0,2-0,4 m e 0,4-0,6 m para os atributos físicos e 0,6-0,8 m para os atributos mineralógicos. Os valores médios para a densidade do solo e resistência do solo à penetração são maiores no compartimento I onde a relação Ct/Ct+Gb é relativamente maior, indicando a presença de maior teor de caulinita. No compartimento II a condutividade hidráulica e a macroporsidade são maiores, influenciados provavelmente pelo predomínio da gibbsita. Portanto, conclui-se que a identificação das pedoformas é muito eficiente para compreender a variabilidade espacial de propriedades do solo. Sendo que, as variações na forma da paisagem promovem variabilidade espacial diferenciada das propriedades físicas e mineralógicas do solo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent studies have demonstrated that the sheath dynamics in plasma immersion ion implantation (PIII) is significantly affected by an external magnetic field. In this paper, a two-dimensional computer simulation of a magnetic-field-enhanced PHI system is described. Negative bias voltage is applied to a cylindrical target located on the axis of a grounded vacuum chamber filled with uniform molecular nitrogen plasma. A static magnetic field is created by a small coil installed inside the target holder. The vacuum chamber is filled with background nitrogen gas to form a plasma in which collisions of electrons and neutrals are simulated by the Monte Carlo algorithm. It is found that a high-density plasma is formed around the target due to the intense background gas ionization by the magnetized electrons drifting in the crossed E x B fields. The effect of the magnetic field intensity, the target bias, and the gas pressure on the sheath dynamics and implantation current of the PHI system is investigated.