963 resultados para Crystalline rocks
Resumo:
Five, novel, meso-tetra[4-(3,4,5-trialkoxybenzoate)phenyl]porphyrins and their metal complexes were synthesized and their molecular structures were confirmed by H-1 NMR, FTIR spectroscopy and elemental analysis. Mesomorphic studies using DSC, polarizing optical microscope and X-ray diffraction revealed that all compounds exhibited thermotropic columnar mesophases over a wide mesophase temperature range and low liquid crystalline-crystal line transition temperature. (c) 2007 Elsevier Ltd. All rights reserved
Resumo:
The crystallization behaviors and morphology of asymmetric crystalline-crystalline diblock copolymers poly(ethylene oxide-lactide) (PEO-b-PLLA) were investigated using differential scanning calorimetry (DSC), wide angle X-ray diffraction (WAXD), and microscopic techniques (polarized optical microscopy (POM) and atomic force microscopy (AFM)). Both blocks of PEO5-b-PLLA(16) can be crystallized, which was confirmed by WAXD, while PEO block in PEO5-b-PLLA(30) is difficult to crystallize because of the confinement induced by the high glass transition temperature and crystallization of PLLA block with the microphase separation of the block copolymer.
Resumo:
We report the effect of n-n isotype organic heterojunction consisting of copper hexadecafluorophthalocyanine (F16CuPc) and phthalocyanatotin (IV) dichloride (SnCl2Pc). Their interfacial electronic structure was observed by Kelvin probe force microscopy (KPFM), and there is band bending in two materials, resulting in an electron accumulation region in F16CuPc layer and an electron depletion region in SnCl2Pc layer. The forming of organic heterojunction was explained by carriers flowing through the interface due to thermal emission of electrons. Furthermore, the carrier transport behavior parallel and vertical to heterojunction interface was also revealed by their heterojunction field-effect transistor with normally on operation mode and heterojunction diodes with rectifying property.
Resumo:
Single crystalline Bi2S3 With various morphologies (wires, rods, and flowers) has been successfully prepared via a simple polyol solution process and characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and transmission electron microscopy (TEM) techniques. The morphologies of Bi2S3 crystals are highly dependent on the experimental parameters, including the reaction temperature, reactant ratio, sulfur source, and additive. The adjustment of these parameters can lead to an obvious shape evolution of products, and the growth mechanism has been proposed.
Resumo:
Poly (3-butylthiophene) (P3BT) is a much less studied conjugated polymer despite its high crystallizability and thus excellent electrical property. In this work, morphology of P3BT at different crystalline polymorphs and solvent/thermal induced phase transition between form I and U modifications have been intensively investigated by using optical microscopy, electron microscopy, differential scanning calorimetry, and X-ray diffraction. It is shown that a direct deposition from carbon disulfide (CS2) at fast evaporation results in P3BT crystals in form I modification, giving typical whiskerlike morphology. In contrast, low evaporation rate from CS, leads to formation of form II crystals with spherulitic morphology, which is so far scarcely observed in polythiophene.
Resumo:
Highly crystalline organic superlattice has great potential for providing innovative function in organic devices. With studies of the structure and fundamental electronical properties, we have demonstrated the phathalocynine organic superlattice, which is a structure composed of periodically alternating crystalline layers of H2Pc and F16CuPc. A periodical crystal structure and electronic structure appear in this organic superlattice system. High density of mobile electrons and holes distribute periodically in F16CuPc and H2Pc layers, respectively, leading to a significant change in intrinsic properties of organic semiconductors.
Resumo:
This paper reports a versatile seed-mediated growth method for selectively synthesizing single-crystalline rhombic dodecahedral, octahedral, and cubic gold nanocrystals. In the seed-mediated growth method, cetylpyridinium chloride (CPC) and CPC-capped single-crystalline gold nanocrystals 41.3 nm in size are used as the surfactant and seeds, respectively. The CPC-capped gold seeds can avoid twinning during the growth process, which enables us to study the correlations between the growth conditions and the shapes of the gold nanocrystals. Surface-energy and kinetic considerations are taken into account to understand the formation mechanisms of the single-crystalline gold nanocrystals with varying shapes.
Resumo:
Tetraoctyl-substituted vanadyl phthalocyanine (OVPc4C8) as a new NIR-absorbing discotic liquid crystalline material can form highly ordered thin films with edge-on alignment of the molecules and molecular packing mode identical to that in the phase II of OVPc for solution processed OTFTs with mobility up to 0.017 cm(2) V-1 s(-1).
Resumo:
3'-Nonafluorobutylmethyl-4'-methyl-spiro[cyclopentyl-9,1']fluorenes were successfully synthesized via tandem radical-addition reactions between 9,9-diallylfluorenes and perfluorobutyl iodide in the presence of a radical initiator followed by reduction under mild conditions. Single crystal analysis indicates that two substituents at 3,4-positions of cyclopentane are in a maleinoid form. Accordingly, four oligo(fluorene-co-bithiophene)s with the same molecular length of similar to 10 nm (7 fluorene units and 12 thiophene units) containing one to three novel spiro-fluorene units were synthesized.
Resumo:
Large-scale arrays consist of dendritic single-crystalline Ag/Pd alloy nanostructures are synthesized for the first time. A simple galvanic replacement reaction is introduced to grow these arrays directly on Ag substrates. The morphology of the products strongly depended on the reaction temperature and the concentration of H2PdCl4 solution. The mechanism of the formation of alloy and the dendritic morphology has been discussed. These alloy arrays exhibit high surface-enhanced Raman scattering (SERS) activity and may have potential applications in investigation of "in situ" Pd catalytic reactions using SERS. Moreover, electrocatalytic measurements suggest that the obtained dendritic Ag/Pd alloy nanostructures exhibit electrocatytic activity toward the oxidation of formic acid.
Resumo:
The deformation mechanism or styrene/n-butyl acrylate copolymer latex films with fiber symmetric crystalline structure subjected to uniaxial stretching was studied using synchrotron small-angle X-ray scattering technique. The fibers were drawn at angles or 0, 35, and 55 degrees with respect to the Fiber axis. In all cases, the microscopic deformation within the crystallites was Found to deviate from affine deformation behavior with respect to the macroscopic deformation ratio. Moreover, the extent of this deviation is different in the three cases. This peculiar behavior can be attributed to the relative orientation of the (111) plane of the crystals, the plane of densest packing, with respect to the stretching direction in each case. When the stretching direction coincides with the crystallographic (111) plane, which is the case for stretching directions of 0 and 55 degrees with respect to the fiber axis, the microscopic deformation deviates less from affine behavior than when the stretching direction is arbitrarily oriented with respect to the crystallographic (111) plan.