629 resultados para Cronodinâmica quântica


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A study of the angular distributions of leptons from decays of J/ψ"s produced in p-C and p-W collisions at s√=41.6~GeV has been performed in the J/ψ Feynman-x region −0.341 GeV/c a significant dependence on the reference frame is found: the polar anisotropy is more pronounced in the Collins-Soper frame and almost vanishes in the helicity frame, where, instead, a significant azimuthal anisotropy arises.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The results of a search for the rare two-body charmless baryonic decays TeX and TeX are reported. The analysis uses a data sample, corresponding to an integrated luminosity of 0.9 fb−1, of pp collision data collected by the LHCb experiment at a centre-of-mass energy of 7 TeV. An excess of TeX candidates with respect to background expectations is seen with a statistical significance of 3.3 standard deviations. This is the first evidence for a two-body charmless baryonic B 0 decay. No significant TeX signal is observed, leading to an improvement of three orders of magnitude over previous bounds. If the excess events are interpreted as signal, the 68.3% confidence level intervals on the branching fractions are $ TeX $ where the first uncertainty is statistical and the second is systematic.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

By exciting at 788 nm, we have characterized the near infrared emissions of trivalent thulium ions in monoclinic KGd(WO4)2 single crystals at 1.48 and 1.84 mm as a function of dopant concentration from 0.1% to 10% and temperature from 10 K to room temperature. We used the reciprocity method to calculate the maximum emission cross-section of 3.0310220 cm2 at 1.838 mm for the polarization parallel to the Nm principal optical direction. These results agrees well with the experimental data. Experimental decay times of the 3H4!3F4 and 3F4!3H6 transitions have been measured as a function of thulium concentration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The binding energies of deformed even-even nuclei have been analyzed within the framework of a recently proposed microscopic-macroscopic model. We have used the semiclassical Wigner-Kirkwood ̄h expansion up to fourth order, instead of the usual Strutinsky averaging scheme, to compute the shell corrections in a deformed Woods-Saxon potential including the spin-orbit contribution. For a large set of 561 even-even nuclei with Z 8 and N 8, we find an rms deviation from the experiment of 610 keV in binding energies, comparable to the one found for the same set of nuclei using the finite range droplet model of Moller and Nix (656 keV). As applications of our model, we explore its predictive power near the proton and neutron drip lines as well as in the superheavy mass region. Next, we systematically explore the fourth-order Wigner-Kirkwood corrections to the smooth part of the energy. It is found that the ratio of the fourth-order to the second-order corrections behaves in a very regular manner as a function of the asymmetry parameter I=(N−Z)/A. This allows us to absorb the fourth-order corrections into the second-order contributions to the binding energy, which enables us us to simplify and speed up the calculation of deformed nuclei.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The recently developed semiclassical variational Wigner-Kirkwood (VWK) approach is applied to finite nuclei using external potentials and self-consistent mean fields derived from Skyrme inter-actions and from relativistic mean field theory. VWK consist s of the Thomas-Fermi part plus a pure, perturbative h 2 correction. In external potentials, VWK passes through the average of the quantal values of the accumulated level density and total en energy as a function of the Fermi energy. However, there is a problem of overbinding when the energy per particle is displayed as a function of the particle number. The situation is analyzed comparing spherical and deformed harmonic oscillator potentials. In the self-consistent case, we show for Skyrme forces that VWK binding energies are very close to those obtained from extended Thomas-Fermi functionals of h 4 order, pointing to the rapid convergence of the VWK theory. This satisfying result, however, does not cure the overbinding problem, i.e., the semiclassical energies show more binding than they should. This feature is more pronounced in the case of Skyrme forces than with the relativistic mean field approach. However, even in the latter case the shell correction energy for e.g.208 Pb turns out to be only ∼ −6 MeV what is about a factor two or three off the generally accepted value. As an adhoc remedy, increasing the kinetic energy by 2.5%, leads to shell correction energies well acceptable throughout the periodic table. The general importance of the present studies for other finite Fermi systems, self-bound or in external potentials, is pointed out.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We perform Hartree calculations of symmetric and asymmetric semi-infinite nuclear matter in the framework of relativistic models based on effective hadronic field theories as recently proposed in the literature. In addition to the conventional cubic and quartic scalar self-interactions, the extended models incorporate a quartic vector self-interaction, scalar-vector non-linearities and tensor couplings of the vector mesons. We investigate the implications of these terms on nuclear surface properties such as the surface energy coefficient, surface thickness, surface stiffness coefficient, neutron skin thickness and the spin-orbit force.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using mean field theory, we have studied Bose-Fermi mixtures in a one-dimensional optical lattice in the case of an attractive boson-fermion interaction. We consider that the fermions are in the degenerate regime and that the laser intensities are such that quantum coherence across the condensate is ensured. We discuss the effect of the optical lattice on the critical rotational frequency for vortex line creation in the Bose-Einstein condensate, as well as how it affects the stability of the boson-fermion mixture. A reduction of the critical frequency for nucleating a vortex is observed as the strength of the applied laser is increased. The onset of instability of the mixture occurs for a sizably lower number of fermions in the presence of a deep optical lattice.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background:Average energies of nuclear collective modes may be efficiently and accurately computed using a nonrelativistic constrained approach without reliance on a random phase approximation (RPA). Purpose: To extend the constrained approach to the relativistic domain and to establish its impact on the calibration of energy density functionals. Methods: Relativistic RPA calculations of the giant monopole resonance (GMR) are compared against the predictions of the corresponding constrained approach using two accurately calibrated energy density functionals. Results: We find excellent agreement at the 2% level or better between the predictions of the relativistic RPA and the corresponding constrained approach for magic (or semimagic) nuclei ranging from 16 O to 208 Pb. Conclusions: An efficient and accurate method is proposed for incorporating nuclear collective excitations into the calibration of future energy density functionals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The computer simulation of reaction dynamics has nowadays reached a remarkable degree of accuracy. Triatomic elementary reactions are rigorously studied with great detail on a straightforward basis using a considerable variety of Quantum Dynamics computational tools available to the scientific community. In our contribution we compare the performance of two quantum scattering codes in the computation of reaction cross sections of a triatomic benchmark reaction such as the gas phase reaction Ne + H2+ %12. NeH++ H. The computational codes are selected as representative of time-dependent (Real Wave Packet [ ]) and time-independent (ABC [ ]) methodologies. The main conclusion to be drawn from our study is that both strategies are, to a great extent, not competing but rather complementary. While time-dependent calculations advantages with respect to the energy range that can be covered in a single simulation, time-independent approaches offer much more detailed information from each single energy calculation. Further details such as the calculation of reactivity at very low collision energies or the computational effort related to account for the Coriolis couplings are analyzed in this paper.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The semiclassical Wigner-Kirkwood ̄h expansion method is used to calculate shell corrections for spherical and deformed nuclei. The expansion is carried out up to fourth order in ̄h. A systematic study of Wigner-Kirkwood averaged energies is presented as a function of the deformation degrees of freedom. The shell corrections, along with the pairing energies obtained by using the Lipkin-Nogami scheme, are used in the microscopic-macroscopic approach to calculate binding energies. The macroscopic part is obtained from a liquid drop formula with six adjustable parameters. Considering a set of 367 spherical nuclei, the liquid drop parameters are adjusted to reproduce the experimental binding energies, which yields a root mean square (rms) deviation of 630 keV. It is shown that the proposed approach is indeed promising for the prediction of nuclear masses.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We analyze the results for infinite nuclear and neutron matter using the standard relativistic mean field model and its recent effective field theory motivated generalization. For the first time, we show quantitatively that the inclusion in the effective theory of vector meson self-interactions and scalar-vector cross-interactions explains naturally the recent experimental observations of the softness of the nuclear equation of state, without losing the advantages of the standard relativistic model for finite nuclei.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A scheme to generate long-range spin-spin interactions between three-level ions in a chain is presented, providing a feasible experimental route to the rich physics of well-known SU(3) models. In particular, we demonstrate different signatures of quantum chaos which can be controlled and observed in experiments with trapped ions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Topological order has proven a useful concept to describe quantum phase transitions which are not captured by the Ginzburg-Landau type of symmetry-breaking order. However, lacking a local order parameter, topological order is hard to detect. One way to detect it is via direct observation of anyonic properties of excitations which are usually discussed in the thermodynamic limit, but so far has not been realized in macroscopic quantum Hall samples. Here we consider a system of few interacting bosons subjected to the lowest Landau level by a gauge potential, and theoretically investigate vortex excitations in order to identify topological properties of different ground states. Our investigation demonstrates that even in surprisingly small systems anyonic properties are able to characterize the topological order. In addition, focusing on a system in the Laughlin state, we study the robustness of its anyonic behavior in the presence of tunable finite-range interactions acting as a perturbation. A clear signal of a transition to a different state is reflected by the system's anyonic properties.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We compute the shift in the frequency of the spin resonance in a solid that rotates in the field of a circularly polarized electromagnetic wave. Electron-spin resonance, nuclear magnetic resonance, and ferromagnetic resonance are considered. We show that contrary to the case of the rotating LC circuit, the shift in the frequency of the spin resonance has strong dependence on the symmetry of the receiver. The shift due to rotation occurs only when rotational symmetry is broken by the anisotropy of the gyromagnetic tensor, by the shape of the body or by magnetocrystalline anisotropy. General expressions for the resonance frequency and power absorption are derived and implications for experiment are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

By exciting at 940 nm, we have characterized the 1.84 m near infrared emission of trivalent thulium ions in Yb3+, Tm3+:KGd WO4 2 single crystals as a function of the dopant concentration and temperature, from 10 K to room temperature. An overall 3H6 Stark splitting of 470 cm−1 for the Tm3+ ions in the Yb3+, Tm3+:KGd WO4 2 was obtained. We also studied the blue emission at 476 nm Tm3+ and the near infrared emissions at 1.48 m Tm3+ and 1 m Yb3+ as a function of the dopant concentration. Experimental decay times of the 1G4, 3H4, and 3F4 Tm3+ and 2F5/2 Yb3+ excited states have been measured as a function of Yb3+ and Tm3+ ion concentrations. For the 3F4 →3H6 transition of Tm3+ ions, we used the reciprocity method to calculate the maximum emission cross section of 3.07 10−20 cm2 at 1.84 m for the polarization parallel to the Nm principal optical direction.