927 resultados para Computer User Training
Resumo:
Current image database metadata schemas require users to adopt a specific text-based vocabulary. Text-based metadata is good for searching but not for browsing. Existing image-based search facilities, on the other hand, are highly specialised and so suffer similar problems. Wexelblat's semantic dimensional spatial visualisation schemas go some way towards addressing this problem by making both searching and browsing more accessible to the user in a single interface. But the question of how and what initial metadata to enter a database remains. Different people see different things in an image and will organise a collection in equally diverse ways. However, we can find some similarity across groups of users regardless of their reasoning. For example, a search on Amazon.com returns other products also, based on an averaging of how users navigate the database. In this paper, we report on applying this concept to a set of images for which we have visualised them using traditional methods and the Amazon.com method. We report on the findings of this comparative investigation in a case study setting involving a group of randomly selected participants. We conclude with the recommendation that in combination, the traditional and averaging methods would provide an enhancement to current database visualisation, searching, and browsing facilities.
Resumo:
Most widely-used computer software packages, such as word processors, spreadsheets and web browsers, incorporate comprehensive help systems, partly because the software is meant for those with little technical knowledge. This paper identifies four systematic philosophies or approaches to help system delivery, namely the documentation approach, based on written documents, either paper-based or online; the training approach, either offered before the user starts working on the software or on-the-job; intelligent help, that is online, context-sensitive help or that relying on software agents; and finally an approach based on minimalism, defined as providing help only when and where it is needed.
Resumo:
Automatic ontology building is a vital issue in many fields where they are currently built manually. This paper presents a user-centred methodology for ontology construction based on the use of Machine Learning and Natural Language Processing. In our approach, the user selects a corpus of texts and sketches a preliminary ontology (or selects an existing one) for a domain with a preliminary vocabulary associated to the elements in the ontology (lexicalisations). Examples of sentences involving such lexicalisation (e.g. ISA relation) in the corpus are automatically retrieved by the system. Retrieved examples are validated by the user and used by an adaptive Information Extraction system to generate patterns that discover other lexicalisations of the same objects in the ontology, possibly identifying new concepts or relations. New instances are added to the existing ontology or used to tune it. This process is repeated until a satisfactory ontology is obtained. The methodology largely automates the ontology construction process and the output is an ontology with an associated trained leaner to be used for further ontology modifications.
Resumo:
We study the dynamics of on-line learning in multilayer neural networks where training examples are sampled with repetition and where the number of examples scales with the number of network weights. The analysis is carried out using the dynamical replica method aimed at obtaining a closed set of coupled equations for a set of macroscopic variables from which both training and generalization errors can be calculated. We focus on scenarios whereby training examples are corrupted by additive Gaussian output noise and regularizers are introduced to improve the network performance. The dependence of the dynamics on the noise level, with and without regularizers, is examined, as well as that of the asymptotic values obtained for both training and generalization errors. We also demonstrate the ability of the method to approximate the learning dynamics in structurally unrealizable scenarios. The theoretical results show good agreement with those obtained by computer simulations.
Resumo:
This research describes the development of a groupware system which adds security services to a Computer Supported Cooperative Work system operating over the Internet. The security services use cryptographic techniques to provide a secure access control service and an information protection service. These security services are implemented as a protection layer for the groupware system. These layers are called External Security Layer (ESL) and Internal Security Layer (ISL) respectively. The security services are sufficiently flexible to allow the groupware system to operate in both synchronous and asynchronous modes. The groupware system developed - known as Secure Software Inspection Groupware (SecureSIG) - provides security for a distributed group performing software inspection. SecureSIG extends previous work on developing flexible software inspection groupware (FlexSIG) Sahibuddin, 1999). The SecureSIG model extends the FlexSIG model, and the prototype system was added to the FlexSIG prototype. The prototype was built by integrating existing software, communication and cryptography tools and technology. Java Cryptography Extension (JCE) and Internet technology were used to build the prototype. To test the suitability and transparency of the system, an evaluation was conducted. A questionnaire was used to assess user acceptability.
Resumo:
In Information Filtering (IF) a user may be interested in several topics in parallel. But IF systems have been built on representational models derived from Information Retrieval and Text Categorization, which assume independence between terms. The linearity of these models results in user profiles that can only represent one topic of interest. We present a methodology that takes into account term dependencies to construct a single profile representation for multiple topics, in the form of a hierarchical term network. We also introduce a series of non-linear functions for evaluating documents against the profile. Initial experiments produced positive results.
Resumo:
Genome sequences from many organisms, including humans, have been completed, and high-throughput analyses have produced burgeoning volumes of 'omics' data. Bioinformatics is crucial for the management and analysis of such data and is increasingly used to accelerate progress in a wide variety of large-scale and object-specific functional analyses. Refined algorithms enable biotechnologists to follow 'computer-aided strategies' based on experiments driven by high-confidence predictions. In order to address compound problems, current efforts in immuno-informatics and reverse vaccinology are aimed at developing and tuning integrative approaches and user-friendly, automated bioinformatics environments. This will herald a move to 'computer-aided biotechnology': smart projects in which time-consuming and expensive large-scale experimental approaches are progressively replaced by prediction-driven investigations.