901 resultados para Computer Graphics and Computer-Aided Design
Resumo:
This paper presents novel simulation tools to assist the lecturers about learning processes on renewable energy sources, considering photovoltaic (PV) systems. The PV behavior, functionality and its interaction with power electronic converters are investigated in the simulation tools. The main PV output characteristics, I (current) versus V (voltage) and P (power) versus V (voltage), were implemented in the tools, in order to aid the users for the design steps. In order to verify the effectiveness of the developed tools the simulation results were compared with Matlab. Finally, a prototype was implemented with the purpose to compare the experimental results with the results from the proposed tools, validating its operational feasibility. © 2011 IEEE.
Resumo:
This paper is a preliminary version of Chapter 3 of a State-of-the-Art Report by the IASS Working Group 5: Concrete Shell Roofs. The intention of this chapter is to set forth for those who intend to design concrete shell roofs information and advice about the selection, verification and utilization of commercial computer tools for analysis and design tasks.The computer analysis and design steps for a concrete shell roof are described. Advice follows on the aspects to be considered in the application of commercial finite element (FE)computer programs to concrete shell analysis, starting with recommendations on how novices can gain confidence and competence in the use of software. To establish vocabulary and provide background references, brief surveys are presented of, first,element types and formulations for shells and, second, challenges presented by advanced analyses of shells. The final section of the chapter indicates what capabilities to seek in selecting commercial FE software for the analysis and design of concrete shell roofs. Brief concluding remarks summarize advice regarding judicious use of computer analysis in design practice.
Resumo:
The design optimization of industrial products has always been an essential activity to improve product quality while reducing time-to-market and production costs. Although cost management is very complex and comprises all phases of the product life cycle, the control of geometrical and dimensional variations, known as Dimensional Management (DM), allows compliance with product and process requirements. Hence, the tolerance-cost optimization becomes the main practice to provide an effective application of Design for Tolerancing (DfT) and Design to Cost (DtC) approaches by enabling a connection between product tolerances and associated manufacturing costs. However, despite the growing interest in this topic, a profitable application in the industry of these techniques is hampered by their complexity: the definition of a systematic framework is the key element to improving design optimization, enhancing the concurrent use of Computer-Aided tools and Model-Based Definition (MBD) practices. The present doctorate research aims to define and develop an integrated methodology for product/process design optimization, to better exploit the new capabilities of advanced simulations and tools. By implementing predictive models and multi-disciplinary optimization, a Computer-Aided Integrated framework for tolerance-cost optimization has been proposed to allow the integration of DfT and DtC approaches and their direct application for the design of automotive components. Several case studies have been considered, with the final application of the integrated framework on a high-performance V12 engine assembly, to achieve both functional targets and cost reduction. From a scientific point of view, the proposed methodology provides an improvement for the tolerance-cost optimization of industrial components. The integration of theoretical approaches and Computer-Aided tools allows to analyse the influence of tolerances on both product performance and manufacturing costs. The case studies proved the suitability of the methodology for its application in the industrial field, providing the identification of further areas for improvement and refinement.
Resumo:
Dietary changes associated with drug therapy can reduce high serum cholesterol levels and dramatically decrease the risk of coronary artery disease, stroke, and overall mortality. Statins are hypolipemic drugs that are effective in the reduction of cholesterol serum levels, attenuating cholesterol synthesis in liver by competitive inhibition regarding the substrate or molecular target HMG-CoA reductase. We have herewith used computer-aided molecular design tools, i.e., flexible docking, virtual screening in large data bases, molecular interaction fields to propose novel potential HMG-CoA reductase inhibitors that are promising for the treatment of hypercholesterolemia.
Resumo:
Tese de Doutoramento (Programa Doutoral em Engenharia Biomédica)
Resumo:
The present study investigates the short- and long-term outcomes of a computer-assisted cognitive remediation (CACR) program in adolescents with psychosis or at high risk. 32 adolescents participated in a blinded 8-week randomized controlled trial of CACR treatment compared to computer games (CG). Clinical and neuropsychological evaluations were undertaken at baseline, at the end of the program and at 6-month. At the end of the program (n = 28), results indicated that visuospatial abilities (Repeatable Battery for the Assessment of Neuropsychological Status, RBANS; P = .005) improved signifi cantly more in the CACR group compared to the CG group. Furthermore, other cognitive functions (RBANS), psychotic symptoms (Positive and Negative Symptom Scale) and psychosocial functioning (Social and Occupational Functioning Assessment Scale) improved signifi cantly, but at similar rates, in the two groups. At long term (n = 22), cognitive abilities did not demonstrated any amelioration in the control group while, in the CACR group, signifi cant long-term improvements in inhibition (Stroop; P = .040) and reasoning (Block Design Test; P = .005) were observed. In addition, symptom severity (Clinical Global Improvement) decreased signifi cantly in the control group (P = .046) and marginally in the CACR group (P = .088). To sum up, CACR can be successfully administered in this population. CACR proved to be effective over and above CG for the most intensively trained cognitive ability. Finally, on the long-term, enhanced reasoning and inhibition abilities, which are necessary to execute higher-order goals or to adapt behavior to the ever-changing environment, were observed in adolescents benefi ting from a CACR.
Resumo:
Recently, morphometric measurements of the ascending aorta have been done with ECG-gated multidector computerized tomography (MDCT) to help the development of future novel transcatheter therapies (TCT); nevertheless, the variability of such measurements remains unknown. Thirty patients referred for ECG-gated CT thoracic angiography were evaluated. Continuous reformations of the ascending aorta, perpendicular to the centerline, were obtained automatically with a commercially available computer aided diagnosis (CAD). Then measurements of the maximal diameter were done with the CAD and manually by two observers (separately). Measurements were repeated one month later. The Bland-Altman method, Spearman coefficients, and a Wilcoxon signed-rank test were used to evaluate the variability, the correlation, and the differences between observers. The interobserver variability for maximal diameter between the two observers was up to 1.2 mm with limits of agreement [-1.5, +0.9] mm; whereas the intraobserver limits were [-1.2, +1.0] mm for the first observer and [-0.8, +0.8] mm for the second observer. The intraobserver CAD variability was 0.8 mm. The correlation was good between observers and the CAD (0.980-0.986); however, significant differences do exist (P<0.001). The maximum variability observed was 1.2 mm and should be considered in reports of measurements of the ascending aorta. The CAD is as reproducible as an experienced reader.
Resumo:
In order to gain a better understanding of online conceptual collaborative design processes this paper investigates how student designers make use of a shared virtual synchronous environment when engaged in conceptual design. The software enables users to talk to each other and share sketches when they are remotely located. The paper describes a novel methodology for observing and analysing collaborative design processes by adapting the concepts of grounded theory. Rather than concentrating on narrow aspects of the final artefacts, emerging “themes” are generated that provide a broader picture of collaborative design process and context descriptions. Findings on the themes of “grounding – mutual understanding” and “support creativity” complement findings from other research, while important themes associated with “near-synchrony” have not been emphasised in other research. From the study, a series of design recommendations are made for the development of tools to support online computer-supported collaborative work in design using a shared virtual environment.
Resumo:
This paper describes a novel methodology for observing and analysing collaborative design by using the concepts of cognitive dimensions related to concept-based misfit analysis. The study aims at gaining an insight into support for creative practice of graphical communication in collaborative design processes of designers while sketching within a shared white board and audio conferencing environment. Empirical data on design processes have been obtained from observation of groups of student designers solving an interior space-planning problem of a lounge-diner in a shared virtual environment. The results of the study provide recommendations for the design and development of interactive systems to support such collaborative design activities.
Resumo:
Drug discovery has moved toward more rational strategies based on our increasing understanding of the fundamental principles of protein-ligand interactions. Structure( SBDD) and ligand-based drug design (LBDD) approaches bring together the most powerful concepts in modern chemistry and biology, linking medicinal chemistry with structural biology. The definition and assessment of both chemical and biological space have revitalized the importance of exploring the intrinsic complementary nature of experimental and computational methods in drug design. Major challenges in this field include the identification of promising hits and the development of high-quality leads for further development into clinical candidates. It becomes particularly important in the case of neglected tropical diseases (NTDs) that affect disproportionately poor people living in rural and remote regions worldwide, and for which there is an insufficient number of new chemical entities being evaluated owing to the lack of innovation and R&D investment by the pharmaceutical industry. This perspective paper outlines the utility and applications of SBDD and LBDD approaches for the identification and design of new small-molecule agents for NTDs.
Resumo:
Percutaneous needle intervention based on PET/CT images is effective, but exposes the patient to unnecessary radiation due to the increased number of CT scans required. Computer assisted intervention can reduce the number of scans, but requires handling, matching and visualization of two different datasets. While one dataset is used for target definition according to metabolism, the other is used for instrument guidance according to anatomical structures. No navigation systems capable of handling such data and performing PET/CT image-based procedures while following clinically approved protocols for oncologic percutaneous interventions are available. The need for such systems is emphasized in scenarios where the target can be located in different types of tissue such as bone and soft tissue. These two tissues require different clinical protocols for puncturing and may therefore give rise to different problems during the navigated intervention. Studies comparing the performance of navigated needle interventions targeting lesions located in these two types of tissue are not often found in the literature. Hence, this paper presents an optical navigation system for percutaneous needle interventions based on PET/CT images. The system provides viewers for guiding the physician to the target with real-time visualization of PET/CT datasets, and is able to handle targets located in both bone and soft tissue. The navigation system and the required clinical workflow were designed taking into consideration clinical protocols and requirements, and the system is thus operable by a single person, even during transition to the sterile phase. Both the system and the workflow were evaluated in an initial set of experiments simulating 41 lesions (23 located in bone tissue and 18 in soft tissue) in swine cadavers. We also measured and decomposed the overall system error into distinct error sources, which allowed for the identification of particularities involved in the process as well as highlighting the differences between bone and soft tissue punctures. An overall average error of 4.23 mm and 3.07 mm for bone and soft tissue punctures, respectively, demonstrated the feasibility of using this system for such interventions. The proposed system workflow was shown to be effective in separating the preparation from the sterile phase, as well as in keeping the system manageable by a single operator. Among the distinct sources of error, the user error based on the system accuracy (defined as the distance from the planned target to the actual needle tip) appeared to be the most significant. Bone punctures showed higher user error, whereas soft tissue punctures showed higher tissue deformation error.
Resumo:
Oncological liver surgery and interventions aim for removal of tumor tissue while preserving a sufficient amount of functional tissue to ensure organ regeneration. This requires detailed understanding of the patient-specific internal organ anatomy (blood vessel system, bile ducts, tumor location). The introduction of computer support in the surgical process enhances anatomical orientation through patient-specific 3D visualization and enables precise reproduction of planned surgical strategies though stereotactic navigation technology. This article provides clinical background information on indications and techniques for the treatment of liver tumors, reviews the technological contributions addressing the problem of organ motion during navigated surgery on a deforming organ, and finally presents an overview of the clinical experience in computer-assisted liver surgery and interventions. The review concludes that several clinically applicable solutions for computer aided liver surgery are available and small-scale clinical trials have been performed. Further developments will be required more accurate and faster handling of organ deformation and large clinical studies will be required for demonstrating the benefits of computer aided liver surgery.
Resumo:
OBJECTIVES To find the best pairing of first and second reader at highest sensitivity for detecting lung nodules with CT at various dose levels. MATERIALS AND METHODS An anthropomorphic lung phantom and artificial lung nodules were used to simulate screening CT-examination at standard dose (100 mAs, 120 kVp) and 8 different low dose levels, using 120, 100 and 80 kVp combined with 100, 50 and 25 mAs. At each dose level 40 phantoms were randomly filled with 75 solid and 25 ground glass nodules (5-12 mm). Two radiologists and 3 different computer aided detection softwares (CAD) were paired to find the highest sensitivity. RESULTS Sensitivities at standard dose were 92%, 90%, 84%, 79% and 73% for reader 1, 2, CAD1, CAD2, CAD3, respectively. Combined sensitivity for human readers 1 and 2 improved to 97%, (p1=0.063, p2=0.016). Highest sensitivities--between 97% and 99.0%--were achieved by combining any radiologist with any CAD at any dose level. Combining any two CADs, sensitivities between 85% and 88% were significantly lower than for radiologists combined with CAD (p<0.03). CONCLUSIONS Combination of a human observer with any of the tested CAD systems provide optimal sensitivity for lung nodule detection even at reduced dose at 25 mAs/80 kVp.
Resumo:
OBJECTIVES The aim of this phantom study was to minimize the radiation dose by finding the best combination of low tube current and low voltage that would result in accurate volume measurements when compared to standard CT imaging without significantly decreasing the sensitivity of detecting lung nodules both with and without the assistance of CAD. METHODS An anthropomorphic chest phantom containing artificial solid and ground glass nodules (GGNs, 5-12 mm) was examined with a 64-row multi-detector CT scanner with three tube currents of 100, 50 and 25 mAs in combination with three tube voltages of 120, 100 and 80 kVp. This resulted in eight different protocols that were then compared to standard CT sensitivity (100 mAs/120 kVp). For each protocol, at least 127 different nodules were scanned in 21-25 phantoms. The nodules were analyzed in two separate sessions by three independent, blinded radiologists and computer-aided detection (CAD) software. RESULTS The mean sensitivity of the radiologists for identifying solid lung nodules on a standard CT was 89.7% ± 4.9%. The sensitivity was not significantly impaired when the tube and current voltage were lowered at the same time, except at the lowest exposure level of 25 mAs/80 kVp [80.6% ± 4.3% (p = 0.031)]. Compared to the standard CT, the sensitivity for detecting GGNs was significantly lower at all dose levels when the voltage was 80 kVp; this result was independent of the tube current. The CAD significantly increased the radiologists' sensitivity for detecting solid nodules at all dose levels (5-11%). No significant volume measurement errors (VMEs) were documented for the radiologists or the CAD software at any dose level. CONCLUSIONS Our results suggest a CT protocol with 25 mAs and 100 kVp is optimal for detecting solid and ground glass nodules in lung cancer screening. The use of CAD software is highly recommended at all dose levels.