916 resultados para Computational topology


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ordinary differential magnetic field line equations are solved numerically; the tokamak magnetic structure is studied on Hefei Tokamak-7 Upgrade (HT-7U) when the equilibrium field with a monotonic q-profile is perturbed by a helical magnetic field. We find that a single mode (m, n) helical perturbation can cause the formation of islands on rational surfaces with q = m/n and q = (m +/- 1, +/- 2, +/- 3,...)/n due to the toroidicity and plasma shape (i.e. elongation and triangularity), while there are many undestroyed magnetic surfaces called Kolmogorov-Arnold-Moser (KAM) barriers on irrational surfaces. The islands on the same rational surface do not have the same size. When the ratio between the perturbing magnetic field B-r(r) and the toroidal magnetic field amplitude B(phi)0 is large enough, the magnetic island chains on different rational surfaces will overlap and chaotic orbits appear in the overlapping area, and the magnetic field becomes stochastic. It is remarkable that the stochastic layer appears first in the plasma edge region.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Computational general relativity is a field of study which has reached maturity only within the last decade. This thesis details several studies that elucidate phenomena related to the coalescence of compact object binaries. Chapters 2 and 3 recounts work towards developing new analytical tools for visualizing and reasoning about dynamics in strongly curved spacetimes. In both studies, the results employ analogies with the classical theory of electricity and magnitism, first (Ch. 2) in the post-Newtonian approximation to general relativity and then (Ch. 3) in full general relativity though in the absence of matter sources. In Chapter 4, we examine the topological structure of absolute event horizons during binary black hole merger simulations conducted with the SpEC code. Chapter 6 reports on the progress of the SpEC code in simulating the coalescence of neutron star-neutron star binaries, while Chapter 7 tests the effects of various numerical gauge conditions on the robustness of black hole formation from stellar collapse in SpEC. In Chapter 5, we examine the nature of pseudospectral expansions of non-smooth functions motivated by the need to simulate the stellar surface in Chapters 6 and 7. In Chapter 8, we study how thermal effects in the nuclear equation of state effect the equilibria and stability of hypermassive neutron stars. Chapter 9 presents supplements to the work in Chapter 8, including an examination of the stability question raised in Chapter 8 in greater mathematical detail.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis addresses a series of topics related to the question of how people find the foreground objects from complex scenes. With both computer vision modeling, as well as psychophysical analyses, we explore the computational principles for low- and mid-level vision.

We first explore the computational methods of generating saliency maps from images and image sequences. We propose an extremely fast algorithm called Image Signature that detects the locations in the image that attract human eye gazes. With a series of experimental validations based on human behavioral data collected from various psychophysical experiments, we conclude that the Image Signature and its spatial-temporal extension, the Phase Discrepancy, are among the most accurate algorithms for saliency detection under various conditions.

In the second part, we bridge the gap between fixation prediction and salient object segmentation with two efforts. First, we propose a new dataset that contains both fixation and object segmentation information. By simultaneously presenting the two types of human data in the same dataset, we are able to analyze their intrinsic connection, as well as understanding the drawbacks of today’s “standard” but inappropriately labeled salient object segmentation dataset. Second, we also propose an algorithm of salient object segmentation. Based on our novel discoveries on the connections of fixation data and salient object segmentation data, our model significantly outperforms all existing models on all 3 datasets with large margins.

In the third part of the thesis, we discuss topics around the human factors of boundary analysis. Closely related to salient object segmentation, boundary analysis focuses on delimiting the local contours of an object. We identify the potential pitfalls of algorithm evaluation for the problem of boundary detection. Our analysis indicates that today’s popular boundary detection datasets contain significant level of noise, which may severely influence the benchmarking results. To give further insights on the labeling process, we propose a model to characterize the principles of the human factors during the labeling process.

The analyses reported in this thesis offer new perspectives to a series of interrelating issues in low- and mid-level vision. It gives warning signs to some of today’s “standard” procedures, while proposing new directions to encourage future research.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis introduces new tools for geometric discretization in computer graphics and computational physics. Our work builds upon the duality between weighted triangulations and power diagrams to provide concise, yet expressive discretization of manifolds and differential operators. Our exposition begins with a review of the construction of power diagrams, followed by novel optimization procedures to fully control the local volume and spatial distribution of power cells. Based on this power diagram framework, we develop a new family of discrete differential operators, an effective stippling algorithm, as well as a new fluid solver for Lagrangian particles. We then turn our attention to applications in geometry processing. We show that orthogonal primal-dual meshes augment the notion of local metric in non-flat discrete surfaces. In particular, we introduce a reduced set of coordinates for the construction of orthogonal primal-dual structures of arbitrary topology, and provide alternative metric characterizations through convex optimizations. We finally leverage these novel theoretical contributions to generate well-centered primal-dual meshes, sphere packing on surfaces, and self-supporting triangulations.