930 resultados para Compositional data analysis
Resumo:
Atmospheric surface boundary layer parameters vary anomalously in response to the occurrence of annular solar eclipse on 15th January 2010 over Cochin. It was the longest annular solar eclipse occurred over South India with high intensity. As it occurred during the noon hours, it is considered to be much more significant because of its effects in all the regions of atmosphere including ionosphere. Since the insolation is the main driving factor responsible for the anomalous changes occurred in the surface layer due to annular solar eclipse, occurred on 15th January 2010, that played very important role in understanding dynamics of the atmosphere during the eclipse period because of its coincidence with the noon time. The Sonic anemometer is able to give data of zonal, meridional and vertical wind as well as the air temperature at a temporal resolution of 1 s. Different surface boundary layer parameters and turbulent fluxes were computed by the application of eddy correlation technique using the high resolution station data. The surface boundary layer parameters that are computed using the sonic anemometer data during the period are momentum flux, sensible heat flux, turbulent kinetic energy, frictional velocity (u*), variance of temperature, variances of u, v and w wind. In order to compare the results, a control run has been done using the data of previous day as well as next day. It is noted that over the specified time period of annular solar eclipse, all the above stated surface boundary layer parameters vary anomalously when compared with the control run. From the observations we could note that momentum flux was 0.1 Nm 2 instead of the mean value 0.2 Nm-2 when there was eclipse. Sensible heat flux anomalously decreases to 50 Nm 2 instead of the mean value 200 Nm 2 at the time of solar eclipse. The turbulent kinetic energy decreases to 0.2 m2s 2 from the mean value 1 m2s 2. The frictional velocity value decreases to 0.05 ms 1 instead of the mean value 0.2 ms 1. The present study aimed at understanding the dynamics of surface layer in response to the annular solar eclipse over a tropical coastal station, occurred during the noon hours. Key words: annular solar eclipse, surface boundary layer, sonic anemometer
Resumo:
Traditionally, compositional data has been identified with closed data, and the simplex has been considered as the natural sample space of this kind of data. In our opinion, the emphasis on the constrained nature of compositional data has contributed to mask its real nature. More crucial than the constraining property of compositional data is the scale-invariant property of this kind of data. Indeed, when we are considering only few parts of a full composition we are not working with constrained data but our data are still compositional. We believe that it is necessary to give a more precise definition of composition. This is the aim of this oral contribution
Resumo:
The biplot has proved to be a powerful descriptive and analytical tool in many areas of applications of statistics. For compositional data the necessary theoretical adaptation has been provided, with illustrative applications, by Aitchison (1990) and Aitchison and Greenacre (2002). These papers were restricted to the interpretation of simple compositional data sets. In many situations the problem has to be described in some form of conditional modelling. For example, in a clinical trial where interest is in how patients’ steroid metabolite compositions may change as a result of different treatment regimes, interest is in relating the compositions after treatment to the compositions before treatment and the nature of the treatments applied. To study this through a biplot technique requires the development of some form of conditional compositional biplot. This is the purpose of this paper. We choose as a motivating application an analysis of the 1992 US President ial Election, where interest may be in how the three-part composition, the percentage division among the three candidates - Bush, Clinton and Perot - of the presidential vote in each state, depends on the ethnic composition and on the urban-rural composition of the state. The methodology of conditional compositional biplots is first developed and a detailed interpretation of the 1992 US Presidential Election provided. We use a second application involving the conditional variability of tektite mineral compositions with respect to major oxide compositions to demonstrate some hazards of simplistic interpretation of biplots. Finally we conjecture on further possible applications of conditional compositional biplots
Resumo:
Starting with logratio biplots for compositional data, which are based on the principle of subcompositional coherence, and then adding weights, as in correspondence analysis, we rediscover Lewi's spectral map and many connections to analyses of two-way tables of non-negative data. Thanks to the weighting, the method also achieves the property of distributional equivalence
Resumo:
There are two principal chemical concepts that are important for studying the natural environment. The first one is thermodynamics, which describes whether a system is at equilibrium or can spontaneously change by chemical reactions. The second main concept is how fast chemical reactions (kinetics or rate of chemical change) take place whenever they start. In this work we examine a natural system in which both thermodynamics and kinetic factors are important in determining the abundance of NH+4 , NO−2 and NO−3 in superficial waters. Samples were collected in the Arno Basin (Tuscany, Italy), a system in which natural and antrophic effects both contribute to highly modify the chemical composition of water. Thermodynamical modelling based on the reduction-oxidation reactions involving the passage NH+4 -> NO−2 -> NO−3 in equilibrium conditions has allowed to determine the Eh redox potential values able to characterise the state of each sample and, consequently, of the fluid environment from which it was drawn. Just as pH expresses the concentration of H+ in solution, redox potential is used to express the tendency of an environment to receive or supply electrons. In this context, oxic environments, as those of river systems, are said to have a high redox potential because O2 is available as an electron acceptor. Principles of thermodynamics and chemical kinetics allow to obtain a model that often does not completely describe the reality of natural systems. Chemical reactions may indeed fail to achieve equilibrium because the products escape from the site of the rection or because reactions involving the trasformation are very slow, so that non-equilibrium conditions exist for long periods. Moreover, reaction rates can be sensitive to poorly understood catalytic effects or to surface effects, while variables as concentration (a large number of chemical species can coexist and interact concurrently), temperature and pressure can have large gradients in natural systems. By taking into account this, data of 91 water samples have been modelled by using statistical methodologies for compositional data. The application of log–contrast analysis has allowed to obtain statistical parameters to be correlated with the calculated Eh values. In this way, natural conditions in which chemical equilibrium is hypothesised, as well as underlying fast reactions, are compared with those described by a stochastic approach
Resumo:
The classical statistical study of the wind speed in the atmospheric surface layer is made generally from the analysis of the three habitual components that perform the wind data, that is, the component W-E, the component S-N and the vertical component, considering these components independent. When the goal of the study of these data is the Aeolian energy, so is when wind is studied from an energetic point of view and the squares of wind components can be considered as compositional variables. To do so, each component has to be divided by the module of the corresponding vector. In this work the theoretical analysis of the components of the wind as compositional data is presented and also the conclusions that can be obtained from the point of view of the practical applications as well as those that can be derived from the application of this technique in different conditions of weather
Resumo:
The aim of this talk is to convince the reader that there are a lot of interesting statistical problems in presentday life science data analysis which seem ultimately connected with compositional statistics. Key words: SAGE, cDNA microarrays, (1D-)NMR, virus quasispecies
Resumo:
Functional Data Analysis (FDA) deals with samples where a whole function is observed for each individual. A particular case of FDA is when the observed functions are density functions, that are also an example of infinite dimensional compositional data. In this work we compare several methods for dimensionality reduction for this particular type of data: functional principal components analysis (PCA) with or without a previous data transformation and multidimensional scaling (MDS) for diferent inter-densities distances, one of them taking into account the compositional nature of density functions. The difeerent methods are applied to both artificial and real data (households income distributions)
Resumo:
A presentation on the collection and analysis of data taken from SOES 6018. This module aims to ensure that MSc Oceanography, MSc Marine Science, Policy & Law and MSc Marine Resource Management students are equipped with the skills they need to function as professional marine scientists, in addition to / in conjuction with the skills training in other MSc modules. The module covers training in fieldwork techniques, communication & research skills, IT & data analysis and professional development.
Resumo:
Class exercise to analyse qualitative data mediated on use of a set of transcripts, augmented by videos from web site. Discussion is around not only how the data is codes, interview bias, dimensions of analysis. Designed as an introduction.
Resumo:
Compositional data, also called multiplicative ipsative data, are common in survey research instruments in areas such as time use, budget expenditure and social networks. Compositional data are usually expressed as proportions of a total, whose sum can only be 1. Owing to their constrained nature, statistical analysis in general, and estimation of measurement quality with a confirmatory factor analysis model for multitrait-multimethod (MTMM) designs in particular are challenging tasks. Compositional data are highly non-normal, as they range within the 0-1 interval. One component can only increase if some other(s) decrease, which results in spurious negative correlations among components which cannot be accounted for by the MTMM model parameters. In this article we show how researchers can use the correlated uniqueness model for MTMM designs in order to evaluate measurement quality of compositional indicators. We suggest using the additive log ratio transformation of the data, discuss several approaches to deal with zero components and explain how the interpretation of MTMM designs di ers from the application to standard unconstrained data. We show an illustration of the method on data of social network composition expressed in percentages of partner, family, friends and other members in which we conclude that the faceto-face collection mode is generally superior to the telephone mode, although primacy e ects are higher in the face-to-face mode. Compositions of strong ties (such as partner) are measured with higher quality than those of weaker ties (such as other network members)
Resumo:
Social network has gained remarkable attention in the last decade. Accessing social network sites such as Twitter, Facebook LinkedIn and Google+ through the internet and the web 2.0 technologies has become more affordable. People are becoming more interested in and relying on social network for information, news and opinion of other users on diverse subject matters. The heavy reliance on social network sites causes them to generate massive data characterised by three computational issues namely; size, noise and dynamism. These issues often make social network data very complex to analyse manually, resulting in the pertinent use of computational means of analysing them. Data mining provides a wide range of techniques for detecting useful knowledge from massive datasets like trends, patterns and rules [44]. Data mining techniques are used for information retrieval, statistical modelling and machine learning. These techniques employ data pre-processing, data analysis, and data interpretation processes in the course of data analysis. This survey discusses different data mining techniques used in mining diverse aspects of the social network over decades going from the historical techniques to the up-to-date models, including our novel technique named TRCM. All the techniques covered in this survey are listed in the Table.1 including the tools employed as well as names of their authors.
Resumo:
In this paper a new parametric method to deal with discrepant experimental results is developed. The method is based on the fit of a probability density function to the data. This paper also compares the characteristics of different methods used to deduce recommended values and uncertainties from a discrepant set of experimental data. The methods are applied to the (137)Cs and (90)Sr published half-lives and special emphasis is given to the deduced confidence intervals. The obtained results are analyzed considering two fundamental properties expected from an experimental result: the probability content of confidence intervals and the statistical consistency between different recommended values. The recommended values and uncertainties for the (137)Cs and (90)Sr half-lives are 10,984 (24) days and 10,523 (70) days, respectively. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Dimensionality reduction is employed for visual data analysis as a way to obtaining reduced spaces for high dimensional data or to mapping data directly into 2D or 3D spaces. Although techniques have evolved to improve data segregation on reduced or visual spaces, they have limited capabilities for adjusting the results according to user's knowledge. In this paper, we propose a novel approach to handling both dimensionality reduction and visualization of high dimensional data, taking into account user's input. It employs Partial Least Squares (PLS), a statistical tool to perform retrieval of latent spaces focusing on the discriminability of the data. The method employs a training set for building a highly precise model that can then be applied to a much larger data set very effectively. The reduced data set can be exhibited using various existing visualization techniques. The training data is important to code user's knowledge into the loop. However, this work also devises a strategy for calculating PLS reduced spaces when no training data is available. The approach produces increasingly precise visual mappings as the user feeds back his or her knowledge and is capable of working with small and unbalanced training sets.