896 resultados para Compósito de heptamolibdato e cobre
Resumo:
The goal set for this work was to synthesize and to characterize new iron and copper complexes with the Schiff base 3-MeOsalen and ligands of biological relevance, whose formulas are [Fe(3-MeOsalen)NO2], [Fe(3-MeOsalen)(etil2-dtc)], [Fe(3-MeOsalen)NO] and Na[Cu(3-MeOsalen)NO2]. The compounds were characterized by vibrational spectroscopy in the infrared region (IV) and Electronic spectroscopy in the ultraviolet and visible region (Uv-Vis). From the analysis of infrared spectra, they proved to formation of precursor complexes, as evidenced by changes in the vibrationals frequencies ν(C=N) e ν(C-O) and the emergence of vibrationals modes metal-oxygen and metal-nitrogen. For nitro complexes of iron and copper were observed ν(NO2)ass around 1300 cm-1 e ν(NO2)sim in 1271 cm-1 , indicating that the coordination is done via the nitrogen atom. The complex spectrum [Fe(3-MeOsalen)(etil2-dtc)] exhibited two bands, the ν(C-NR2) in 1508 cm-1 e ν(C-S) in 997 cm-1 , the relevant vibrational modes of coordinating ligand in the bidentate form. For the complex [Fe(3-MeOsalen)NO] was observed a new intense band in 1670 cm-1 related to the ν(NO). With the electronic spectra, the formation of complexes was evidenced by shifts of bands intraligands transitions and the emergence of new bands such as LMCT (p Cl- d* Fe3+) in [Fe(3-MeOsalen)Cl] and the d-d in [Cu(3-MeOsalen)H2O]. As for the [Fe(3-MeOsalen)NO2] has highlighted the absence of LMCT band present in the precursor complex as for the [Cu(3-MeOsalen)NO2] found that the displacement of the band hipsocrômico d-d on 28 nm. The electronic spectrum of [Fe(3-MeOsalen)(etil2-dtc)] presented LMCT band shifts and changes in intraligantes transitions. With regard to [Fe(3-MeOsalen)NO], revealed a more energetic transitions intraligands regions from the strong character π receiver NO and MLCT band of transition dπFe(II)π*(NO).
Resumo:
The Sustainability has been evidence in the world today; organizations have sought to be more and more into this philosophy in their processes, whether products or attendance. In the present work were manufactured eco-composites with animal fiber (dog wool) that is currently discarded into the environment without any use. Project phases consisted on the initial treatment of fibers with alkaline solution (NaOH) at 0.05 mols for removal of impurities, developing methods to convert these fibers (reinforcement) blended with castor oil polyurethane (matrix) in eco-composite with different proportions (5%, 10%, 15% and 20%). Fiber properties were evaluated by analysis of SEM, XRD and FTIR. The composites were produced by compression molding with dimensions 30x30x1cm. For characterization of the composites the following tests were performed: mechanical (tensile, compression, shore hardness A) according the standards and testing water absorption, moisture regain and biodegradation. The analysis of thermal properties on fibers and composites were by TG, DSC, thermal conductivity, resistivity, heat capacity and thermal resistance. Analyzing the results of these tests, it was observed that the composite reinforced with 20% showed a better thermal performance between others composites and dimensional stability when compared to commercial thermal insulation. Also is possible to observe a balance in moisture absorption of the composite being shown with its higher absorption rate in this same sample (20%). The micrographs show the fiber interaction regions with polyurethane to fill the empty spaces. In hardness and compression testing can identify that with increasing percentage of the fiber material acquires a greater stiffness by making a higher voltage is used for forming necessary. So by the tests performed in eco-composites, the highest percentage of fiber used as reinforcement in their composition obtained a better performance compared to the remaining eco-composites, reaching values very close to the PU.
Resumo:
This work aims to manufacture and characterize a hybrid plastic composite with the matrix isophthalic polyester resin base and having as reinforcing glass fiber and the dry endocarp of coconut (Coco nucifera Linn) in the form of particles as filler. The composite was made industrially in Tecniplas Industry and Trade LTDA. in the form of plate, and was manufactured process made by the manual lamination (Hand Lay Up). From the plate they were prepared test specimens for testing density, water absorption, uniaxial traction in dry and wet states, and testing of bending, as well as studies on the behavior of the generated fractures, macroscopic and microscopic, in mechanical tests through. All tests were performed in order to find the most viable applications the hybrid composite manufactured. The tensile and bending tests were analyzed last tensile properties, elasticity and deformation module. After the studies, it is observed that the percentage moisture absorbed was 3.03%. The presence of moisture in the tensile test meant a decrease of 19.77% from last stand, and 5.26% in the elastic modulus. For bending tests gave an average value of 69.13 MPa flexural strength. The results show the application of hybrid composite studied in lightweight structures, indoors, which require low / medium performance traction demands, and which involve flexural requests.
Resumo:
With the emergence of new technologies, has grown the need to use new materials, and this has intensified research on the collection and use of materials from renewable sources, is to reduce production costs and / or environmental impact. In this context, it was found that the sheath coconut straw, can be utilized as raw material for the production of a eco-composite that can be used as a thermal and acoustic insulator. After selected from the coconut sheaths were subjected to treatment with aqueous 2 % sodium hydroxide (NaOH). The composite study was produced with the sheath and coconut natural latex, with coconut sheath percentage in the proportions 15%, 25% and 35% of the total compound volume. Physical, thermal and acoustic properties of the composites were analyzed in order to obtain data on the use of viability as thermoacoustic insulation. The CP15 composites, CP25 and CP35 showed thermal conductivity 0.188 W/m.K, 0.155 W/m.K and 0.150 W/m.K, respectively. It can be applied as thermal insulation in hot systems to 200 ° C. The CP35 composite was more efficient as a thermal and acoustic insulation, providing 20% noise reduction, 31% and 34% for frequencies of 1 kHz, 2 kHz and 4 kHz, respectively. The analyzes were based on ABNT, ASTM, UL. Based on these results, it can be concluded that the eco-composite produced the hem of coconut can be used as thermal and acoustic insulation. Thus, it gives a more noble end to this material, which most often is burned or disposed of improperly in the environment.
Resumo:
With the emergence of new technologies, has grown the need to use new materials, and this has intensified research on the collection and use of materials from renewable sources, is to reduce production costs and / or environmental impact. In this context, it was found that the sheath coconut straw, can be utilized as raw material for the production of a eco-composite that can be used as a thermal and acoustic insulator. After selected from the coconut sheaths were subjected to treatment with aqueous 2 % sodium hydroxide (NaOH). The composite study was produced with the sheath and coconut natural latex, with coconut sheath percentage in the proportions 15%, 25% and 35% of the total compound volume. Physical, thermal and acoustic properties of the composites were analyzed in order to obtain data on the use of viability as thermoacoustic insulation. The CP15 composites, CP25 and CP35 showed thermal conductivity 0.188 W/m.K, 0.155 W/m.K and 0.150 W/m.K, respectively. It can be applied as thermal insulation in hot systems to 200 ° C. The CP35 composite was more efficient as a thermal and acoustic insulation, providing 20% noise reduction, 31% and 34% for frequencies of 1 kHz, 2 kHz and 4 kHz, respectively. The analyzes were based on ABNT, ASTM, UL. Based on these results, it can be concluded that the eco-composite produced the hem of coconut can be used as thermal and acoustic insulation. Thus, it gives a more noble end to this material, which most often is burned or disposed of improperly in the environment.
Resumo:
He was obtained and studied the feasibility of using TPA (Tissue Cotton Plan) screen type, for bagging, with a weight of 207.9 g / m2 in a composite of orthophthalic crystal polyester resin matrix. The process for obtaining the composite was tested against the maximum number of layers that could be used without compromising the processability and manufacturing of CPs in compression mold. Five configurations / formulations were selected and tested at 1, 4, 8, 10 and 12 layers of cotton tissue - TPA. TPA was not subjected to chemical treatment, only by passing a mechanical washing process. The composite in its various configurations / formulations was characterized to determine its physical properties. The properties of the composite were higher viability resistance to bending, approaching the matrix and impact resistance, superiority in relation to the polyester resin. Another property that has shown good result compared to other composite has water absorption. Analyzing all the properties set the settings / formulations with higher viability were TA8 and TA10, by combining good processability and higher mechanical strength, with lower loss compared to polyester resin matrix. The composite showed lower mechanical behavior of the resin matrix for all the formulations studied except the impact resistance. The SEM showed a good adhesion between the layers of TPA and polyester resin matrix, without the presence of micro voids in the matrix confirming the efficient manufacturing process of the samples for characterization. The composite proposed proved to be viable for the fabrication of structures with low requests from mechanical stresses, and as demonstrated for the manufacture of solar and wind prototypes, and packaging, shelving, decorative items, crafts and shelves, with good visual appearance.
Resumo:
He was obtained and studied the feasibility of using TPA (Tissue Cotton Plan) screen type, for bagging, with a weight of 207.9 g / m2 in a composite of orthophthalic crystal polyester resin matrix. The process for obtaining the composite was tested against the maximum number of layers that could be used without compromising the processability and manufacturing of CPs in compression mold. Five configurations / formulations were selected and tested at 1, 4, 8, 10 and 12 layers of cotton tissue - TPA. TPA was not subjected to chemical treatment, only by passing a mechanical washing process. The composite in its various configurations / formulations was characterized to determine its physical properties. The properties of the composite were higher viability resistance to bending, approaching the matrix and impact resistance, superiority in relation to the polyester resin. Another property that has shown good result compared to other composite has water absorption. Analyzing all the properties set the settings / formulations with higher viability were TA8 and TA10, by combining good processability and higher mechanical strength, with lower loss compared to polyester resin matrix. The composite showed lower mechanical behavior of the resin matrix for all the formulations studied except the impact resistance. The SEM showed a good adhesion between the layers of TPA and polyester resin matrix, without the presence of micro voids in the matrix confirming the efficient manufacturing process of the samples for characterization. The composite proposed proved to be viable for the fabrication of structures with low requests from mechanical stresses, and as demonstrated for the manufacture of solar and wind prototypes, and packaging, shelving, decorative items, crafts and shelves, with good visual appearance.
Resumo:
The feasibility of using the corn cob to obtain a polymer matrix composite was studied. To obtain the bran, corncob passed the drying process in a solar dryer, and was subsequently triturated in forage and to obtain the different particle sizes, by sieving. Three different grain sizes were used: fine particles (FP) size between 0,10 and 2mm; sized particles (PM) with sizes between 2,10 and 3,35 mm; large particles (PG) sizes between 3,45 and 4,10 mm. Using 20% of residue relative to the resin, the test samples were constructed for characterization of the composite, taking into account thermal and mechanical parameters. The main advantage of the proposed composite is that it has a low density, below the relative resin, about 1.06 kg / m³ for the PG. The composite showed a mechanical behavior less than of the resin to the grain sizes and for all formulations studied. Showed better results for the bending, reaching 25.3 MPa for the PG. The composite also showed be feasible for thermal applications, with thermal conductivity less than 0.21 W / m, ranking as insulation. In terms of homogeneity of the mixture, the most viable grain size is the PF, which also showed improved aesthetics and better processability. This composite can be used to make structures that do not require significant mechanical strength, such as tables, chairs, planks, and solar and wind prototypes, such as ovens and cookers and turbines blades.
Resumo:
The feasibility of using the corn cob to obtain a polymer matrix composite was studied. To obtain the bran, corncob passed the drying process in a solar dryer, and was subsequently triturated in forage and to obtain the different particle sizes, by sieving. Three different grain sizes were used: fine particles (FP) size between 0,10 and 2mm; sized particles (PM) with sizes between 2,10 and 3,35 mm; large particles (PG) sizes between 3,45 and 4,10 mm. Using 20% of residue relative to the resin, the test samples were constructed for characterization of the composite, taking into account thermal and mechanical parameters. The main advantage of the proposed composite is that it has a low density, below the relative resin, about 1.06 kg / m³ for the PG. The composite showed a mechanical behavior less than of the resin to the grain sizes and for all formulations studied. Showed better results for the bending, reaching 25.3 MPa for the PG. The composite also showed be feasible for thermal applications, with thermal conductivity less than 0.21 W / m, ranking as insulation. In terms of homogeneity of the mixture, the most viable grain size is the PF, which also showed improved aesthetics and better processability. This composite can be used to make structures that do not require significant mechanical strength, such as tables, chairs, planks, and solar and wind prototypes, such as ovens and cookers and turbines blades.
Resumo:
In this work a chitosan (CS) ionically crosslinked were manufactured by treatment with sulfuric acid solution for application in the treatment of wastewater from oil industry. Two crosslinking process were developed: homogeneous and heterogeneous. In the homogeneous process the ratio molar of SO42-/ NH3+ (1:6 and 1:4) were the variable analyzed, denominated CS16 and CS14 respectively. In the heterogeneous process the soaking time of the membranes in sulfuric acid solution were the variable studied, being used times of 5 (CS5) and 30 (CS30) minutes. FTIR-ATR results indicated no changes in the characteristics of chitosan after homogeneous crosslinking process, while heterogeneous crosslinking showed formation of ionic bonds between protonated groups from chitosan and the crosslinking agent sulfate ions. TG/DTG and XRD analysis confirmed the formation of these interactions, as also shown the new structure on the surface region of CS5 and CS30 membranes compared to CS, CS16 e CS14. Swelling test in aqueous medium have shown that crosslinking process reduced the membrane sorption capacity. Swelling test in acid medium demonstrated that CS16 and CS14 membranes increasing the adsorption capacity up to a maximum percentage of 140% approximately, whereas the CS5 e CS30 reached a maximum of 60%. The mechanical properties indicated the stiff and ductile behavior of crosslinked membrane. Adsorption experiments of CuCl2 results that CS16 membranes reached the efficiency maximum with 73% of copper removal at pH 5.0 and 87% at pH 4.0. The experiments with CuSO4 also obtained efficiency maximum to the CS16 membrane and 80% to the removal of Cu2+ ions. Also was verified that the increase of concentration and temperature cause a decrease in the adsorption capacity for all membranes. Kinetics study indicated that pseudo-second-order obtained characterized better the membranes. Equilibrium studies demonstrated that the CS, CS16 and CS14 follow the Langmuir model, whereas CS5 and CS30 follows Freundlich model. Filtration experiments results with rejection maximum to the CS16 and CS5 membranes, reaching 92 and 98% respectively.
Resumo:
In this work a chitosan (CS) ionically crosslinked were manufactured by treatment with sulfuric acid solution for application in the treatment of wastewater from oil industry. Two crosslinking process were developed: homogeneous and heterogeneous. In the homogeneous process the ratio molar of SO42-/ NH3+ (1:6 and 1:4) were the variable analyzed, denominated CS16 and CS14 respectively. In the heterogeneous process the soaking time of the membranes in sulfuric acid solution were the variable studied, being used times of 5 (CS5) and 30 (CS30) minutes. FTIR-ATR results indicated no changes in the characteristics of chitosan after homogeneous crosslinking process, while heterogeneous crosslinking showed formation of ionic bonds between protonated groups from chitosan and the crosslinking agent sulfate ions. TG/DTG and XRD analysis confirmed the formation of these interactions, as also shown the new structure on the surface region of CS5 and CS30 membranes compared to CS, CS16 e CS14. Swelling test in aqueous medium have shown that crosslinking process reduced the membrane sorption capacity. Swelling test in acid medium demonstrated that CS16 and CS14 membranes increasing the adsorption capacity up to a maximum percentage of 140% approximately, whereas the CS5 e CS30 reached a maximum of 60%. The mechanical properties indicated the stiff and ductile behavior of crosslinked membrane. Adsorption experiments of CuCl2 results that CS16 membranes reached the efficiency maximum with 73% of copper removal at pH 5.0 and 87% at pH 4.0. The experiments with CuSO4 also obtained efficiency maximum to the CS16 membrane and 80% to the removal of Cu2+ ions. Also was verified that the increase of concentration and temperature cause a decrease in the adsorption capacity for all membranes. Kinetics study indicated that pseudo-second-order obtained characterized better the membranes. Equilibrium studies demonstrated that the CS, CS16 and CS14 follow the Langmuir model, whereas CS5 and CS30 follows Freundlich model. Filtration experiments results with rejection maximum to the CS16 and CS5 membranes, reaching 92 and 98% respectively.
Resumo:
The constant search for sustainable alternatives has earned great effort of researchers in research and obtaining new materials, encouraging the rise of eco-friendly productive development and providing simple and practical solutions to economic profitability. In this sense, the use of materials derived from natural renewable sources, vegetables, has great potential applicability to sustainable development. As alternative materials plant fibers can be applied to production of a range of composite materials easing the use of materials derived from non-renewable this thesis were sisal mats used for achieving a composite matrix having as one orthophthalic polyester resin. The webs were subjected to surface treatment in boiling water for 15 minutes. The webs of sisal fibers used were, respectively, 5%, 10% and 15% of the composite weight. The composite was obtained and characterized mechanically and thermally to the chosen formulations. several plates of the composite to obtain the body of evidence for the characterization tests complying with the relevant rules were made. The obtained composites showed strength tensile and bending lower than the array, so it can be used where are required low load requests. The most significant result of the composite studied given to the impact energy absorption, far superior to the matrix used. Other properties were highlighted in oil absorption, and density. It proved the feasibility of obtaining the composite for the three formulations studied C5, C10 and C15 being the most feasible to C10. To demonstrate the feasibility of using composite were made a wall clock, a bench, a chair and a shelf, low mechanical stress structures. It was concluded that the sisal rugs exercised the load function in the composite.
Resumo:
The constant search for sustainable alternatives has earned great effort of researchers in research and obtaining new materials, encouraging the rise of eco-friendly productive development and providing simple and practical solutions to economic profitability. In this sense, the use of materials derived from natural renewable sources, vegetables, has great potential applicability to sustainable development. As alternative materials plant fibers can be applied to production of a range of composite materials easing the use of materials derived from non-renewable this thesis were sisal mats used for achieving a composite matrix having as one orthophthalic polyester resin. The webs were subjected to surface treatment in boiling water for 15 minutes. The webs of sisal fibers used were, respectively, 5%, 10% and 15% of the composite weight. The composite was obtained and characterized mechanically and thermally to the chosen formulations. several plates of the composite to obtain the body of evidence for the characterization tests complying with the relevant rules were made. The obtained composites showed strength tensile and bending lower than the array, so it can be used where are required low load requests. The most significant result of the composite studied given to the impact energy absorption, far superior to the matrix used. Other properties were highlighted in oil absorption, and density. It proved the feasibility of obtaining the composite for the three formulations studied C5, C10 and C15 being the most feasible to C10. To demonstrate the feasibility of using composite were made a wall clock, a bench, a chair and a shelf, low mechanical stress structures. It was concluded that the sisal rugs exercised the load function in the composite.
Resumo:
Composite materials arise from the need for lighter materials and with bigger mechanical and thermal resistance. The difficulties of discard, recycling or reuse are currently environmental concerns and, therefore, they are study object of much researches. In this perspective the feasibility of using loofahs (Luffa Cylindrica) for obtainment of a polymeric matrix composite was studied. Six formulations, with 4, 5 and 6 treated layers and untreated, were tested. The loofahs were treated in boiling water to remove lignins, waxes and impurities present in the fibers. After that, they were dried in a direct exposure solar dryer. For the characterization of the composite, thermal (thermal conductivity, thermal capacity, thermal diffusivity and thermal resistivity), mechanical (tensile and bending resistance) and physicochemical (SEM, XRD, density, absorption and degradation) properties were determined. The proposed composite has as advantage the low fiber density, which is around 0.66 g/cm³ (almost half of the polyester resin matrix), resulting in an average composite density of around 1.17g/cm³, 6.0 % lower in relation to the matrix. The treatment carried out in the loofahs increased the mechanical strength of the composite and decreased the humidity absorption. The composite showed lower mechanical behavior than the matrix for all the formulations. The composite also demonstrated itself to be feasible for thermal applications, with a value of thermal conductivity of less than 0.159 W/m.K, ranking it as a good thermal insulator. For all formulations/settings a low adherence between fibers and matrix occurred, with the presence of cracks, showing the fragility due to low impregnation of the fiber by the matrix. This composite can be used to manufacture structures that do not require significant mechanical strength, such as solar prototypes, as ovens and stoves.
Resumo:
Composite materials arise from the need for lighter materials and with bigger mechanical and thermal resistance. The difficulties of discard, recycling or reuse are currently environmental concerns and, therefore, they are study object of much researches. In this perspective the feasibility of using loofahs (Luffa Cylindrica) for obtainment of a polymeric matrix composite was studied. Six formulations, with 4, 5 and 6 treated layers and untreated, were tested. The loofahs were treated in boiling water to remove lignins, waxes and impurities present in the fibers. After that, they were dried in a direct exposure solar dryer. For the characterization of the composite, thermal (thermal conductivity, thermal capacity, thermal diffusivity and thermal resistivity), mechanical (tensile and bending resistance) and physicochemical (SEM, XRD, density, absorption and degradation) properties were determined. The proposed composite has as advantage the low fiber density, which is around 0.66 g/cm³ (almost half of the polyester resin matrix), resulting in an average composite density of around 1.17g/cm³, 6.0 % lower in relation to the matrix. The treatment carried out in the loofahs increased the mechanical strength of the composite and decreased the humidity absorption. The composite showed lower mechanical behavior than the matrix for all the formulations. The composite also demonstrated itself to be feasible for thermal applications, with a value of thermal conductivity of less than 0.159 W/m.K, ranking it as a good thermal insulator. For all formulations/settings a low adherence between fibers and matrix occurred, with the presence of cracks, showing the fragility due to low impregnation of the fiber by the matrix. This composite can be used to manufacture structures that do not require significant mechanical strength, such as solar prototypes, as ovens and stoves.