882 resultados para Colby student interaction with Waterville Jews


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lectins (phytohaemagglutinin) are known to have the unique property of binding with certain specific sugars, polysaccharides and glycoproteins. Although the kinetics of interaction between lectins and sugar have been extensively studied, the binding characteristics of the lectins with various glycoproteins are not well understood. In this laboratory a systematic study has been initiated in relation to the interaction of lectins with glycoproteins. Concanavalin A is known to bind alpha-glucosides, mannosides and biopolymers having these sugar configurations. A galactose binding protein from caster bean has been purified to homogeneity and was found to contain mannose. This lectin was used as the source of glycoprotein for studying its interaction with concanavalin A. This study showed that the interaction is temperature dependent and the dissociation is time and alpha-methyl glucoside concentration dependent. This has led to speculate a model for cell-lectin interaction. Using concanavalin A it has been shown that all the lysosomal enzymes from brain studied were glycoprotein in nature. Moreover, using Sepharose-bound concanavalin A it has been possible to devise a method by which these lysosomal enzymes could be purified considerably. With the knowledge that the interaction between lectin and glycoprotein is not only dependent on the specific sugar present in the glycoprotein, but also on the nature of the glycoprotein it was possible to develop a novel method for immobilizing various glycoprotein enzymes, such as arylsulphatase A, hyaluronidase and glucose oxidase.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Calreticulin is a lectin-like molecular chaperone of the endoplasmic reticulum in eukaryotes. Its interaction with N-glycosylated polypeptides is mediated by the glycan, Glc(1)Man(9)GlcNAc(2), present on the target glycoproteins. In this work, binding of monoglucosyl IgG (chicken) substrate to calreticulin has been studied using real time association kinetics of the interaction with the biosensor based on surface plasmon resonance (SPR). By SPR, accurate association and dissociation rate constants were determined, and these yielded a micromolar association constant. The nature of reaction was unaffected by immobilization of either of the reactants. The Scatchard analysis values for K-a agreed web crith the one obtained by the ratio k(1)/k(-1). The interaction was completely inhibited by free oligosaccharide, Glc(1)Man(9)GlcNAc(2), whereas Man(9)GlcNAc(2) did not bind to the calreticulin-substrate complex, attesting to the exquisite specificity of this interaction. The binding of calreticulin to IgG was used for the development of immunoassay and the relative affinity of the lectin-substrate association was indirectly measured. The values are in agreement with those obtained with SPR. Although the reactions are several orders of magnitude slower than the diffusion controlled processes, the data are qualitatively and quantitatively consistent with single-step bimolecular association and dissociation reaction. Analyses of the activation parameters indicate that reaction is enthalpically driven and does not involve a highly ordered transition state. Based on these data, the mechanism of its chaperone activity is briefly discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sesbania mosaic virus (SeMV) is a single strand positive-sense RNA plant virus that belongs to the genus Sobemovirus. The mechanism of cell-to-cell movement in sobemoviruses has not been well studied. With a view to identify the viral encoded ancillary proteins of SeMV that may assist in cell-to-cell movement of the virus, all the proteins encoded by SeMV genome were cloned into yeast Matchmaker system 3 and interaction studies were performed. Two proteins namely, viral protein genome linked (VPg) and a 10-kDa protein (P10) c v gft encoded by OFR 2a, were identified as possible interacting partners in addition to the viral coat protein (CP). Further characterization of these interactions revealed that the movement protein (MP) recognizes cognate RNA through interaction with VPg, which is covalently linked to the 59 end of the RNA. Analysis of the deletion mutants delineated the domains of MP involved in the interaction with VPg and P10. This study implicates for the first time that VPg might play an important role in specific recognition of viral genome by MP in SeMV and shed light on the possible role of P10 in the viral movement.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The changes in the electronic and magnetic properties of graphene induced by interaction with semiconducting oxide nanoparticles such as ZnO and TiO2 and with magnetic nanoparticles such as Fe3O4, CoFe2O4, and Ni are investigated by using Raman spectroscopy, magnetic measurements, and first-principles calculations. Significant electronic and magnetic interactions between the nanoparticles and graphene are found. The findings suggest that changes in magnetization as well as the Raman shifts are directly linked to charge transfer between the deposited nanoparticles and graphene. The study thus demonstrates significant effects in tailoring the electronic structure of graphene for applications in futuristic electronic devices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Interaction of Bacillus polymyxa with calcite, hematite, corundum and quartz resulted in significant surface chemical changes not only of the cells but also in the minerals. Both the cell surfaces as well as quartz particles were rendered more hydrophobic after mutual interaction, whilst the rest of the minerals exhibited enhanced hydrophilicity after interaction with the bacteria. The bacteria were also observed to be capable of dissolving calcite, hematite and corundum and biosorbing the dissolved metal ions to varying extents. An excess of polysaccharides could be observed on biotreated calcite, hematite and corundum while the predominance of a protein-based metabolic product was evident on quartz surfaces. The utility of bioprocessing in the beneficiation of the above minerals through bioflotation and bioflocculation is demonstrated. (C) 1997 Elsevier Science Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nucleic acid interaction with nanoscale objects like carbon nanotubes (CNTs) and dendrimers is of fundamental interest because of their potential application in CNT separation, gene therapy and antisense therapy. Combining nucleic acids with CNTs and dendrimers also opens the door towards controllable self-assembly to generate various supra-molecular and nano-structures with desired morphologies. The interaction between these nanoscale objects also serve as a model system for studying DNA compaction, which is a fundamental process in chromatin organization. By using fully atomistic simulations, here we report various aspects of the interactions and binding modes of DNA and small interfering RNA (siRNA) with CNTs, graphene and dendrimers. Our results give a microscopic picture and mechanism of the adsorption of single- and double-strand DNA (ssDNA and dsDNA) on CNT and graphene. The nucleic acid-CNT interaction is dominated by the dispersive van der Waals (vdW) interaction. In contrast, the complexation of DNA (both ssDNA and dsDNA) and siRNA with various generations of poly-amido-amine (PAMAM) dendrimers is governed by electrostatic interactions. Our results reveal that both the DNA and siRNA form stable complex with the PAMAM dendrimer at a physiological pH when the dendrimer is positively charged due to the protonation of the primary amines. The size and binding energy of the complex increase with increase in dendrimer generation. We also give a summary of the current status in these fields and discuss future prospects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Effect of interaction of tetracyanoethylene (TCNE) and tetrathia fulvalene (TTF) with boron- and nitrogen-doped graphene has been investigated by Raman spectroscopy. The G- and 2D bands of boron- and nitrogen-doped graphenes in the Raman spectra show significantly different changes on interaction with electron-donor and -acceptor molecules. Thus, tetracyanoethylene (TCNE) and tetrathiafulvalene (TTF) have different effects on the Raman spectra of boron- and nitrogen-doped graphenes. The changes in the Raman spectra brought about by electron-donor and -acceptor molecules can be understood in general terms on the basis of molecular charge transfer. (c) 2012 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Interaction of CdSe and ZnO nanocrystals with electron-donating tetrathiafulvalene (TTF) and electron-withdrawing tetracyanoethylene (TCNE) has been investigated. Isothermal calorimetry shows CdSe nanocrystals interact more strongly with TCNE than TTF. Interaction of larger CdSe nanocrystals with TCNE causes a red-shift in the band-edge emission because of agglomeration, while the smaller CdSe nanocrystals, exhibiting stronger interaction with TCNE modify the optical gap of the nanocrystal. Luminescence of CdSe gets quenched sharply after addition of both TTF and TCNE. ZnO nanocrystals also exhibit luminescence quenching to lesser extent. Defect-emission of ZnO nanocrystals gets red or blue-shifted after interaction with TTF or TCNE respectively. (C) 2012 Elsevier B. V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The emergence of multidrug-resistant bacteria is a global threat for human society. There exist recorded data that silver was used as an antimicrobial agent by the ancient Greeks and Romans during the 8th century. Silver nanoparticles (AgNPs) are of potential interest because of their effective antibacterial and antiviral activities, with minimal cytotoxic effects on the cells. However, very few reports have shown the usage of AgNPs for antibacterial therapy in vivo. In this study, we deciphered the importance of the chosen methods for synthesis and capping of AgNPs for their improved activity in vivo. The interaction of AgNPs with serum albumin has a significant effect on their antibacterial activity. It was observed that uncapped AgNPs exhibited no antibacterial activity in the presence of serum proteins, due to the interaction with bovine serum albumin (BSA), which was confirmed by UV-Vis spectroscopy. However, capped AgNPs with citrate or poly(vinylpyrrolidone)] exhibited antibacterial properties due to minimized interactions with serum proteins. The damage in the bacterial membrane was assessed by flow cytometry, which also showed that only capped AgNPs exhibited antibacterial properties, even in the presence of BSA. In order to understand the in vivo relevance of the antibacterial activities of different AgNPs, a murine salmonellosis model was used. It was conclusively proved that AgNPs capped with citrate or PVP exhibited significant antibacterial activities in vivo against Salmonella infection compared to uncapped AgNPs. These results clearly demonstrate the importance of capping agents and the synthesis method for AgNPs in their use as antimicrobial agents for therapeutic purposes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Identification of viral encoded proteins that interact with RNA-dependent RNA polymerase (RdRp) is an important step towards unraveling the mechanism of replication. Sesbania mosaic virus (SeMV) RdRp was shown to interact strongly with p10 domain of polyprotein 2a and moderately with the protease domain. Mutational analysis suggested that the C-terminal disordered domain of RdRp is involved in the interaction with p10. Coexpression of full length RdRp and p10 resulted in formation of RdRp-p10 complex which showed significantly higher polymerase activity than RdRp alone. Interestingly, C Delta 43 RdRp also showed a similar increase in activity. Thus, p10 acts as a positive regulator of RdRp by interacting with the C-terminal disordered domain of RdRp. (C) 2014 The Authors. Published by Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

© 2004 The Combustion Institute. Published by Elsevier Inc. All rights reserved. In piston engines and in gas turbines, the injection of liquid fuel often leads to the formation of a liquid film on the combustor wall. If a flame reaches this zone, undesired phenomena such as coking may occur and diminish the lifetime of the engine. Moreover, the effect of such an interaction on maximum wall heat fluxes, flame quenching, and pollutant formation is largely unknown. This paper presents a numerical study of the interaction of a premixed flame with a cold wall covered with a film of liquid fuel. Simulations show that the presence of the film leads to a very rich zone at the wall in which the flame cannot propagate. As a result, the flame wall distance remains larger with liquid fuel than it is for a dry wall, and maximum heat fluxes are smaller. The nature of the interaction of flame wall interaction with a liquid fuel is also different from the classical flame/dry wall interaction: it is controlled mainly by chemical mechanisms and not by the thermal quenching effect observed for flames interacting with dry walls: the existence of a very rich zone created above the liquid film is the main mechanism controlling quenching.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

p21 is a protein with important roles in cell proliferation, cell cycle regulation and apoptosis. Several studies have demonstrated that its intracellular localization plays an important role in the functional regulation and binding of calmodulin favors its nuclear translocation. However, the detail mechanism of the interaction with p21 and calmodulin is not well understood. In this report, peptides derived from the C-terminal of p21 that cover the binding domain of calmodulin were used to investigate the association of p21 with calmodulin.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Based on the multidomain structure of Pseudomonas aeruginosa exotoxin A, a fusion protein termed rPEA has been constructed, which is expected to serve as a gene carrier in vitro. The expression and purification of rPEA are described. The basal properties of rPEA as a gene carrier are evaluated by investigating its interaction with plasmid DNA and mimic biomembrane by surface plasmon resonance (SPR) and electrochemical methods. rPEA is proved to be able to bind with plasmid DNA with high affinity. It can also interact with lipid membrane and increase permeability of the membrane, so the probe molecules can easily reach the gold surface and exhibit the electrochemical response.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A sub-chronic administration of phencyclidine to the rat brings about enduring pathophysiological and cognitive changes that resemble some features of schizophrenia. The present study aimed to determine whether the behavioural consequence of this phencyclidine regime extends to a long-term disruption of social interaction that might provide a parallel with some negative symptoms of the disease. Rats were treated with phencyclidine (2mg/kg bi-daily for 1 week) or vehicle followed by a drug-free period. Social interaction was assessed 24h, 1 week, 3 weeks and 6 weeks post-treatment. A long-lasting disturbance of social behaviour was observed in the phencyclidine group, namely more contact and non-contact interaction with an unfamiliar target rat at all time points. Six weeks post-phencyclidine, analysis of brains showed a reduction in expression of parvalbumin immunoreactive neurons in the hippocampus with significant reductions localised to the CA1 and dentate gyrus regions. These results show that sub-chronic phencyclidine produces long-lasting disruptions in social interaction that, however, do not model the social withdrawal seen in patients with schizophrenia. These disturbances of social behaviour may be associated with concurrent pathophysiological brain changes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Prothrombin interacts with phosphatidylserine containing platelet membranes via its N-terminal, gamma-carboxyglutamate (gla) residue-rich domain. Once bound it is cleaved to form the active protease, thrombin (factor IIa). Human prothrombin was cleaved with cathepsin G in the absence of calcium and magnesium ions. Under these conditions, the gla domain was removed. Phospholipid protected the protein from this proteolytic event, and this suggests that a conformational change may be induced by interaction with phospholipids. Binding of prothrombin to a surface containing 20% phosphatidylserine/80% phosphatidylcholine was detected by surface plasmon resonance, whereas no interaction with gla-domainless prothrombin was observed. Binding of intact prothrombin in the presence of calcium ions showed complex association kinetics, suggesting multiple modes of initial interaction with the surface. The kinetics of the dissociation phase could be fitted to a two-phase, exponential decay. This implies that there are at least two forms of the protein on the surface one of which dissociates tenfold more slowly than the other. Taken together, these data suggest that, on binding to a membrane surface, prothrombin undergoes a conformational change to a form which binds more tightly to the membrane.