898 resultados para Coded aperture compressive sensing
Resumo:
The study of the morphology of tidal networks and their relation to salt marsh vegetation is currently an active area of research, and a number of theories have been developed which require validation using extensive observations. Conventional methods of measuring networks and associated vegetation can be cumbersome and subjective. Recent advances in remote sensing techniques mean that these can now often reduce measurement effort whilst at the same time increasing measurement scale. The status of remote sensing of tidal networks and their relation to vegetation is reviewed. The measurement of network planforms and their associated variables is possible to sufficient resolution using digital aerial photography and airborne scanning laser altimetry (LiDAR), with LiDAR also being able to measure channel depths. A multi-level knowledge-based technique is described to extract networks from LiDAR in a semi-automated fashion. This allows objective and detailed geomorphological information on networks to be obtained over large areas of the inter-tidal zone. It is illustrated using LIDAR data of the River Ems, Germany, the Venice lagoon, and Carnforth Marsh, Morecambe Bay, UK. Examples of geomorphological variables of networks extracted from LiDAR data are given. Associated marsh vegetation can be classified into its component species using airborne hyperspectral and satellite multispectral data. Other potential applications of remote sensing for network studies include determining spatial relationships between networks and vegetation, measuring marsh platform vegetation roughness, in-channel velocities and sediment processes, studying salt pans, and for marsh restoration schemes.
Resumo:
An eddy current testing system consists of a multi-sensor probe, a computer and a special expansion card and software for data-collection and analysis. The probe incorporates an excitation coil, and sensor coils; at least one sensor coil is a lateral current-normal coil and at least one is a current perturbation coil.
Resumo:
An eddy current testing system consists of a multi-sensor probe, computer and a special expansion card and software for data collection and analysis. The probe incorporates an excitation coil, and sensor coils; at least one sensor coil is a lateral current-normal coil and at least one is a current perturbation coil.
Resumo:
The Heliospheric Imager (HI) instruments on board the STEREO spacecraft are used to analyze the solar wind during August and September 2007. We show how HI can be used to image the streamer belt and, in particular, the variability of the slow solar wind which originates inside and in the vicinity of the streamer belt. Intermittent mass flows are observed in HI difference images, streaming out along the extension of helmet streamers. These flows can appear very differently in images: plasma distributed on twisted flux ropes, V‐shaped structures, or “blobs.” The variety of these transient features may highlight the richness of phenomena that could occur near helmet streamers: emergence of flux ropes, reconnection of magnetic field lines at the tip of helmet streamers, or disconnection of open magnetic field lines. The plasma released with these transient events forms part of the solar wind in the higher corona; HI observations show that these transients are frequently entrained by corotating interaction regions (CIRs), leading to the formation of larger, brighter plasma structures in HI images. This entrainment is used to estimate the trajectory of these plasma ejecta. In doing so, we demonstrate that successive transients can be entrained by the same CIR in the high corona if they emanate from the same corotating source. Some parts of the streamers are more effective sources of transients than others. Surprisingly, evidence is given for the outflow of a recurring twisted magnetic structure, suggesting that the emergence of flux ropes can be recurrent.
Resumo:
Remote sensing from space-borne platforms is often seen as an appealing method of monitoring components of the hydrological cycle, including river discharge, due to its spatial coverage. However, data from these platforms is often less than ideal because the geophysical properties of interest are rarely measured directly and the measurements that are taken can be subject to significant errors. This study assimilated water levels derived from a TerraSAR-X synthetic aperture radar image and digital aerial photography with simulations from a two dimensional hydraulic model to estimate discharge, inundation extent, depths and velocities at the confluence of the rivers Severn and Avon, UK. An ensemble Kalman filter was used to assimilate spot heights water levels derived by intersecting shorelines from the imagery with a digital elevation model. Discharge was estimated from the ensemble of simulations using state augmentation and then compared with gauge data. Assimilating the real data reduced the error between analyzed mean water levels and levels from three gauging stations to less than 0.3 m, which is less than typically found in post event water marks data from the field at these scales. Measurement bias was evident, but the method still provided a means of improving estimates of discharge for high flows where gauge data are unavailable or of poor quality. Posterior estimates of discharge had standard deviations between 63.3 m3s-1 and 52.7 m3s-1, which were below 15% of the gauged flows along the reach. Therefore, assuming a roughness uncertainty of 0.03-0.05 and no model structural errors discharge could be estimated by the EnKF with accuracy similar to that arguably expected from gauging stations during flood events. Quality control prior to assimilation, where measurements were rejected for being in areas of high topographic slope or close to tall vegetation and trees, was found to be essential. The study demonstrates the potential, but also the significant limitations of currently available imagery to reduce discharge uncertainty in un-gauged or poorly gauged basins when combined with model simulations in a data assimilation framework.
Resumo:
Jerdon's Courser Rhinoptilus bitorquatus is one of the most endangered and least understood birds in the world. It is endemic to scrub habitats in southeast India which have been lost and degraded because of human land use. We used satellite images from 1991 and 2000 and two methods for classifying land cover to quantify loss of Jerdon's Courser habitat. The scrub habitats on which this species depends decreased in area by 11-15% during this short period (9.6 years), predominantly as a result of scrub clearance and conversion to agriculture. The remaining scrub patches were smaller and further from human settlements in 2000 than in 1991, implying that much of the scrub loss had occurred close to human population centres. We discuss the implications of our results for the conservation of Jerdon's Courser and the use of remote sensing methods in conservation.
Resumo:
High resolution descriptions of plant distribution have utility for many ecological applications but are especially useful for predictive modeling of gene flow from transgenic crops. Difficulty lies in the extrapolation errors that occur when limited ground survey data are scaled up to the landscape or national level. This problem is epitomized by the wide confidence limits generated in a previous attempt to describe the national abundance of riverside Brassica rapa (a wild relative of cultivated rapeseed) across the United Kingdom. Here, we assess the value of airborne remote sensing to locate B. rapa over large areas and so reduce the need for extrapolation. We describe results from flights over the river Nene in England acquired using Airborne Thematic Mapper (ATM) and Compact Airborne Spectrographic Imager (CASI) imagery, together with ground truth data. It proved possible to detect 97% of flowering B. rapa on the basis of spectral profiles. This included all stands of plants that occupied >2m square (>5 plants), which were detected using single-pixel classification. It also included very small populations (<5 flowering plants, 1-2m square) that generated mixed pixels, which were detected using spectral unmixing. The high detection accuracy for flowering B. rapa was coupled with a rather large false positive rate (43%). The latter could be reduced by using the image detections to target fieldwork to confirm species identity, or by acquiring additional remote sensing data such as laser altimetry or multitemporal imagery.
Resumo:
The crystal structure of a terminally protected tripeptide Boc-Leu-Aib-beta-Ala-OMe 1 containing non-coded amino acids reveals that it adopts a beta-turn structure, which sell-assembles to form a supramolecular beta-sheet via non-covalent interactions. The SEM image of peptide 1 exhibits amyloid-like fibrillar morphology in the solid state. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
A novel, pyrene-functionalised copolymer has been synthesised in a single step via imidisation of poly(maleic anhydride-alt-1-octadecene) with 1-pyrenemethylamine, and its potential for the detection of volatile nitro aromatic compounds (NACs) evaluated. The new copolymer forms complexes in solution with NACs such as 2,5-dinitrobenzonitrile, as shown by H-1 NMR, UV-vis and fluorescence spectroscopy. Moreover, thin films of this copolymer, cast from THF solution, undergo almost instantaneous fluorescence quenching when exposed to the vapour of 2,5-dinitrobenzonitrile (a model for TNT) at ambient temperatures and pressures.
Resumo:
A tetraazamacrocycle containing ferrocene moieties has been synthesized and characterized. The tetraprotonated form of this compound was evaluated as a receptor (R) for anion recognition of several substrates (S), Cl-, PF6-, HSO4-, H2PO4- and carboxylates, such as p-nitrobenzoate (p-nbz(-)), phthalate (ph(2-)), isophthalate (iph(2-)) and dipicolinate (dipic(2-)). H-1 NMR titrations in CD3OD indicated that this receptor is not suitable for recognizing HSO4- and H2PO4-, but weakly binds p-nbz(-), and strongly interacts with ph(2-), dipic(2-), and iph(2-) anions forming 1 : 2 assembled species. The largest beta(2) binding constant was determined for ph(2-), followed by dipic(2-) and finally iph(2-). The effect of the anionic substrates on the electron-transfer process of the ferrocene units of R was evaluated using cyclic voltammetry (CV) and square wave voltammetry (SWV) in methanol solution and 0.1 mol dm(-3) (CH3)(4)NCl as the supporting electrolyte. Titrations of the receptor were undertaken by addition of anion solutions in their tetrabutylammonium or tetramethylammonium forms. The protonated ligand exhibits a reversible voltammogram, which shifts cathodically in the presence of the substrates. The data revealed kinetic constraints in the formation of the receptor/substrate entity for dipic(2-), ph(2-) and iph(2-) anions, but not for p-nbz(-). In spite of the slow kinetics of assembled species formation with the ph(2-) substrate, this anion provides the largest redox-response when the supramolecular entity is formed, followed by dipic(2-), iph(2-) and finally p-nbz(-) anions. This trend is in agreement with the H-1 NMR results and the values of the binding constants. Single crystal X-ray structures of the receptor with PF6-, ph(2-), iph(2-) and p-nbz(-) were carried out and showed that supermolecules with a RS2 stoichiometry are formed with the first three anions, but RS4 with p-nbz(-). In all cases the binding occurs outside the macrocyclic cavity via N-H center dot center dot center dot O=C hydrogen bonds for carboxylate anions and N - H center dot center dot center dot F hydrogen bonds for the PF6- anion, which is in agreement with the solution results. The macrocyclic framework adopts different conformations in order to interact with each substrate having Fe center dot center dot center dot Fe intramolecular distances ranging from 10.125(14) to 12.783(15) angstrom.
Resumo:
A series of self-assembling terminally blocked tripeptides (containing coded amino acids) form gels in various aromatic solvents including benzene, toluene, xylenes at low concentrations. However these tripeptides do not form gels in aliphatic hydrocarbons like n-hexane, cyclohexane, n-decane etc. Morphological studies of the dried gel indicate the presence of an entangled fibrous network, which is responsible for gelation. Differential scanning calorimetric (DSC) studies of the gels produced by peptide 1 clearly demonstrates thermoreversible nature of the gel and tripeptide-solvent complex may be produced during gel formation. FT-IR and H-1 NMR studies of the gels demonstrate that an intermolecular hydrogen-bonding network is formed during gelation. Single crystal X-ray diffraction studies for peptides 1, 2 and 3 have been performed to investigate the molecular arrangement that might be responsible for forming the fibrous network of these self-assembling peptide gelators. It has been found that the morph responsible for gelation of peptides 1, 2 and 3 in benzene is somewhat different from that of its xerogel.