946 resultados para Closed loop stability


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper introduces a method to analyze and predict stability and transient performance of a distributed system where COTS (Commercial-off-the-shelf) modules share an input filter. The presented procedure is based on the measured data from the input and output terminals of the power modules. The required information for the analysis is obtained by performing frequency response measurements for each converter. This attained data is utilized to compute special transfer functions, which partly determine the source and load interactions within the converters. The system level dynamic description is constructed based on the measured and computed transfer functions introducing cross-coupling mechanisms within the system. System stability can be studied based on the well-known impedance- related minor-loop gain at an arbitrary interface within the system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The impedance-based stability-assessment method has turned out to be a very effective tool and its usage is rapidly growing in different applications ranging from the conventional interconnected dc/dc systems to the grid-connected renewable energy systems. The results are sometime given as a certain forbidden region in the complex plane out of which the impedance ratio--known as minor-loop gain--shall stay for ensuring robust stability. This letter discusses the circle-like forbidden region occupying minimum area in the complex plane, defined by applying maximum peak criteria, which is well-known theory in control engineering. The investigation shows that the circle-like forbidden region will ensure robust stability only if the impedance-based minor-loop gain is determined at the very input or output of each subsystem within the interconnected system. Experimental evidence is provided based on a small-scale dc/dc distributed system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this paper is to provide performance metrics for small-signal stability assessment of a given system architecture. The stability margins are stated utilizing a concept of maximum peak criteria (MPC) derived from the behavior of an impedance-based sensitivity function. For each minor-loop gain defined at every system interface, a single number to state the robustness of stability is provided based on the computed maximum value of the corresponding sensitivity function. In order to compare various power-architecture solutions in terms of stability, a parameter providing an overall measure of the whole system stability is required. The selected figure of merit is geometric average of each maximum peak value within the system. It provides a meaningful metrics for system comparisons: the best system in terms of robust stability is the one that minimizes this index. In addition, the largest peak value within the system interfaces is given thus detecting the weakest point of the system in terms of robustness.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The optimization of power architectures is a complex problem due to the plethora of different ways to connect various system components. This issue has been addressed by developing a methodology to design and optimize power architectures in terms of the most fundamental system features: size, cost and efficiency. The process assumes various simplifications regarding the utilized DC/DC converter models in order to prevent the simulation time to become excessive and, therefore, stability is not considered. The objective of this paper is to present a simplified method to analyze small-signal stability of a system in order to integrate it into the optimization methodology. A black-box modeling approach, applicable to commercial converters with unknown topology and components, is based on frequency response measurements enabling the system small-signal stability assessment. The applicability of passivity-based stability criterion is assessed. The stability margins are stated utilizing a concept of maximum peak criteria derived from the behavior of the impedance-based sensitivity function that provides a single number to state the robustness of the stability of a well-defined minor-loop gain.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this paper is to present a simplified method to analyze small-signal stability of a power system and provide performance metrics for stability assessment of a given power-system-architecture. The stability margins are stated utilizing a concept of maximum peak criteria (MPC), derived from the behavior of an impedance-based sensitivity function that provides a single number to state the robustness of the stability of a well-defined minor-loop gain. For each minor-loop gain, defined at every system interface, the robustness of the stability is provided as a maximum value of the corresponding sensitivity function. Typically power systems comprise of various interfaces and, therefore, in order to compare different architecture solutions in terms of stability, a single number providing an overall measure of the whole system stability is required. The selected figure of merit is geometric average of each maximum peak value within the system, combined with the worst case value of system interfaces.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

El propósito de esta tesis es presentar una metodología para realizar análisis de la dinámica en pequeña señal y el comportamiento de sistemas de alimentación distribuidos de corriente continua (CC), formados por módulos comerciales. Para ello se hace uso de un método sencillo que indica los márgenes de estabilidad menos conservadores posibles mediante un solo número. Este índice es calculado en cada una de las interfaces que componen el sistema y puede usarse para obtener un índice global que indica la estabilidad del sistema global. De esta manera se posibilita la comparación de sistemas de alimentación distribuidos en términos de robustez. La interconexión de convertidores CC-CC entre ellos y con los filtros EMI necesarios puede originar interacciones no deseadas que dan lugar a la degradación del comportamiento de los convertidores, haciendo el sistema más propenso a inestabilidades. Esta diferencia en el comportamiento se debe a interacciones entre las impedancias de los diversos elementos del sistema. En la mayoría de los casos, los sistemas de alimentación distribuida están formados por módulos comerciales cuya estructura interna es desconocida. Por ello los análisis presentados en esta tesis se basan en medidas de la respuesta en frecuencia del convertidor que pueden realizarse desde los terminales de entrada y salida del mismo. Utilizando las medidas de las impedancias de entrada y salida de los elementos del sistema, se puede construir una función de sensibilidad que proporciona los márgenes de estabilidad de las diferentes interfaces. En esta tesis se utiliza el concepto del valor máximo de la función de sensibilidad (MPC por sus siglas en inglés) para indicar los márgenes de estabilidad como un único número. Una vez que la estabilidad de todas las interfaces del sistema se han evaluado individualmente, los índices obtenidos pueden combinarse para obtener un único número con el que comparar la estabilidad de diferentes sistemas. Igualmente se han analizado las posibles interacciones en la entrada y la salida de los convertidores CC-CC, obteniéndose expresiones analíticas con las que describir en detalle los acoplamientos generados en el sistema. Los estudios analíticos realizados se han validado experimentalmente a lo largo de la tesis. El análisis presentado en esta tesis se culmina con la obtención de un índice que condensa los márgenes de estabilidad menos conservativos. También se demuestra que la robustez del sistema está asegurada si las impedancias utilizadas en la función de sensibilidad se obtienen justamente en la entrada o la salida del subsistema que está siendo analizado. Por otra parte, la tesis presenta un conjunto de parámetros internos asimilados a impedancias, junto con sus expresiones analíticas, que permiten una explicación detallada de las interacciones en el sistema. Dichas expresiones analíticas pueden obtenerse bien mediante las funciones de transferencia analíticas si se conoce la estructura interna, o utilizando medidas en frecuencia o identificación de las mismas a través de la respuesta temporal del convertidor. De acuerdo a las metodologías presentadas en esta tesis se puede predecir la estabilidad y el comportamiento de sistemas compuestos básicamente por convertidores CC-CC y filtros, cuya estructura interna es desconocida. La predicción se basa en un índice que condensa la información de los márgenes de estabilidad y que permite la obtención de un indicador de la estabilidad global de todo el sistema, permitiendo la comparación de la estabilidad de diferentes arquitecturas de sistemas de alimentación distribuidos. ABSTRACT The purpose of this thesis is to present dynamic small-signal stability and performance analysis methodology for dc-distributed systems consisting of commercial power modules. Furthermore, the objective is to introduce simple method to state the least conservative margins for robust stability as a single number. In addition, an index characterizing the overall system stability is obtained, based on which different dc-distributed systems can be compared in terms of robustness. The interconnected systems are prone to impedance-based interactions which might lead to transient-performance degradation or even instability. These systems typically are constructed using commercial converters with unknown internal structure. Therefore, the analysis presented throughout this thesis is based on frequency responses measurable from the input and output terminals. The stability margins are stated utilizing a concept of maximum peak criteria, derived from the behavior of impedance-based sensitivity function that provides a single number to state robust stability. Using this concept, the stability information at every system interface is combined to a meaningful number to state the average robustness of the system. In addition, theoretical formulas are extracted to assess source and load side interactions in order to describe detailed couplings within the system. The presented theoretical analysis methodologies are experimentally validated throughout the thesis. In this thesis, according to the presented analysis, the least conservative stability margins are provided as a single number guaranteeing robustness. It is also shown that within the interconnected system the robust stability is ensured only if the impedance-based minor-loop gain is determined at the very input or output of each subsystem. Moreover, a complete set of impedance-type internal parameters as well as the formulas according to which the interaction sensitivity can be fully explained and analyzed, is provided. The given formulation can be utilized equally either based on measured frequency responses, time-domain identified internal parameters or extracted analytic transfer functions. Based on the analysis methodologies presented in this thesis, the stability and performance of interconnected systems consisting of converters with unknown internal structure, can be predicted. Moreover, the provided concept to assess the least conservative stability margins enables to obtain an index to state the overall robust stability of distributed power architecture and thus to compare different systems in terms of stability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Peptides corresponding to the immunodominant loop located at residues 135–158 on capsid protein VP1 of foot-and-mouth disease virus (FMDV) generally elicit high levels of anti-peptide and virus-neutralizing antibodies. In some instances, however, the level of neutralizing antibodies is low or even negligible, even though the level of anti-peptide antibodies is high. We have shown previously that the antigenic activity of peptide 141–159 of VP1 of a variant of serotype A can be mimicked by a retro-inverso (all-d retro or retroenantio) peptide analogue. This retro-inverso analogue induced greater and longer-lasting antibody titers than did the corresponding l-peptide. We now show that a single inoculation of the retro-inverso analogue elicits high levels of neutralizing antibodies that persist longer than those induced against the corresponding l-peptide and confer substantial protection in guinea pigs challenged with the cognate virus. In view of the high stability to proteases of retro-inverso peptide analogues and their enhanced immunogenicity, these results have practical relevance in designing potential peptide vaccines.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

I attempt to reconcile apparently conflicting factors and mechanisms that have been proposed to determine the rate constant for two-state folding of small proteins, on the basis of general features of the structures of transition states. Φ-Value analysis implies a transition state for folding that resembles an expanded and distorted native structure, which is built around an extended nucleus. The nucleus is composed predominantly of elements of partly or well-formed native secondary structure that are stabilized by local and long-range tertiary interactions. These long-range interactions give rise to connecting loops, frequently containing the native loops that are poorly structured. I derive an equation that relates differences in the contact order of a protein to changes in the length of linking loops, which, in turn, is directly related to the unfavorable free energy of the loops in the transition state. Kinetic data on loop extension mutants of CI2 and α-spectrin SH3 domain fit the equation qualitatively. The rate of folding depends primarily on the interactions that directly stabilize the nucleus, especially those in native-like secondary structure and those resulting from the entropy loss from the connecting loops, which vary with contact order. This partitioning of energy accounts for the success of some algorithms that predict folding rates, because they use these principles either explicitly or implicitly. The extended nucleus model thus unifies the observations of rate depending on both stability and topology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

DNA binding activity of p53 is crucial for its tumor suppressor function. Our recent studies have shown that four molecules of the DNA binding domain of human p53 (p53DBD) bind the response elements with high cooperativity and bend the DNA. By using A-tract phasing experiments, we find significant differences between the bending and twisting of DNA by p53DBD and by full-length human wild-type (wt) p53. Our data show that four subunits of p53DBD bend the DNA by 32–36°, whereas wt p53 bends it by 51–57°. The directionality of bending is consistent with major groove bends at the two pentamer junctions in the consensus DNA response element. More sophisticated phasing analyses also demonstrate that p53DBD and wt p53 overtwist the DNA response element by ≈35° and ≈70°, respectively. These results are in accord with molecular modeling studies of the tetrameric complex. Within the constraints imposed by the protein subunits, the DNA can assume a range of conformations resulting from correlated changes in bend and twist angles such that the p53–DNA tetrameric complex is stabilized by DNA overtwisting and bending toward the major groove at the CATG tetramers. This bending is consistent with the inherent sequence-dependent anisotropy of the duplex. Overall, the four p53 moieties are placed laterally in a staggered array on the external side of the DNA loop and have numerous interprotein interactions that increase the stability and cooperativity of binding. The novel architecture of the p53 tetrameric complex has important functional implications including possible p53 interactions with chromatin.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Here we show that presenilin-1 (PS1), a protein involved in Alzheimer's disease, binds directly to epithelial cadherin (E-cadherin). This binding is mediated by the large cytoplasmic loop of PS1 and requires the membrane-proximal cytoplasmic sequence 604–615 of mature E-cadherin. This sequence is also required for E-cadherin binding of protein p120, a known regulator of cadherin-mediated cell adhesion. Using wild-type and PS1 knockout cells, we found that increasing PS1 levels suppresses p120/E-cadherin binding, and increasing p120 levels suppresses PS1/E-cadherin binding. Thus PS1 and p120 bind to and mutually compete for cellular E-cadherin. Furthermore, PS1 stimulates E-cadherin binding to β- and γ-catenin, promotes cytoskeletal association of the cadherin/catenin complexes, and increases Ca2+-dependent cell–cell aggregation. Remarkably, PS1 familial Alzheimer disease mutant ΔE9 increased neither the levels of cadherin/catenin complexes nor cell aggregation, suggesting that this familial Alzheimer disease mutation interferes with cadherin-based cell–cell adhesion. These data identify PS1 as an E-cadherin-binding protein and a regulator of E-cadherin function in vivo.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recently, we established that satellite III (TGGAA)n tandem repeats, which occur at the centromeres of human chromosomes, pair with themselves to form an unusual "self-complementary" antiparallel duplex containing (GGA)2 motifs in which two unpaired guanines from opposite strands intercalate between sheared G.A base pairs. In separate studies, we have also established that the GCA triplet does not form bimolecular (GCA)2 motifs but instead promotes the formation of hairpins containing a GCA-turn motif in which the loop contains a single cytidine closed by a sheared G.A pair. Since TGCAA is the most frequent variant of TGGAA found in satellite III repeats, we reasoned that the potential of this variant to form GCA-turn miniloop fold-back structures might be an important factor in modulating the local structure in natural (TGGAA)n repeats. We report here the NMR-derived solution structure of the heptadecadeoxynucleotide (G)TGGAATGCAATGGAA(C) in which a central TGCAA pentamer is flanked by two TGGAA pentamers. This 17-mer forms a rather unusual and very stable hairpin structure containing eight base pairs in the stem, only four of which are Watson-Crick pairs, and a loop consisting of a single cytidine residue. The stem contains a (GGA)2 motif with intercalative 14G/4G stacking between two sheared G.A base pairs; the loop end of the stem consists of a sheared 8G.10A closing pair with the cytosine base of the 9C loop stacked on 8G. The remarkable stability of this unusual hairpin structure (Tm = 63 degrees C) suggests that it probably plays an important role in modulating the folding of satellite III (TGGAA)n repeats at the centromere.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

RNA-RNA interactions govern a number of biological processes. Several RNAs, including natural sense and antisense RNAs, interact by means of a two-step mechanism: recognition is mediated by a loop-loop complex, which is then stabilized by formation of an extended intermolecular duplex. It was proposed that the same mechanism holds for dimerization of the genomic RNA of human immunodeficiency virus type 1 (HIV-1), an event thought to control crucial steps of HIV-1 replication. However, whereas interaction between the partially self-complementary loop of the dimerization initiation site (DIS) of each monomer is well established, formation of the extended duplex remained speculative. Here we first show that in vitro dimerization of HIV-1 RNA is a specific process, not resulting from simple annealing of denatured molecules. Next we used mutants of the DIS to test the formation of the extended duplex. Four pairs of transcomplementary mutants were designed in such a way that all pairs can form the loop-loop "kissing" complex, but only two of them can potentially form the extended duplex. All pairs of mutants form heterodimers whose thermal stability, dissociation constant, and dynamics were analyzed. Taken together, our results indicate that, in contrast with the interactions between natural sense and antisense RNAs, no extended duplex is formed during dimerization of HIV-1 RNA. We also showed that 55-mer sense RNAs containing the DIS are able to interfere with the preformed HIV-1 RNA dimer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Let T be a given subset of ℝ n , whose elements are called sites, and let s∈T. The Voronoi cell of s with respect to T consists of all points closer to s than to any other site. In many real applications, the position of some elements of T is uncertain due to either random external causes or to measurement errors. In this paper we analyze the effect on the Voronoi cell of small changes in s or in a given non-empty set P⊂T\{s}. Two types of perturbations of P are considered, one of them not increasing the cardinality of T. More in detail, the paper provides conditions for the corresponding Voronoi cell mappings to be closed, lower and upper semicontinuous. All the involved conditions are expressed in terms of the data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The external loop linking the M2 and M3 transmembrane domains is crucial for coupling agonist binding to channel gating in the glycine receptor chloride channel (GlyR). A substituted cysteine accessibility scan previously showed that glycine activation increased the surface accessibility of 6 contiguous residues (Arg(271) Lys(276)) toward the N-terminal end of the homomeric alpha 1 GlyR M2 - M3 loop. In the present study we used a similar approach to determine whether the allosteric antagonist, picrotoxin, could impose conformational changes to this domain that cannot be induced by varying agonist concentrations alone. Picrotoxin slowed the reaction rate of a sulfhydryl-containing compound ( MTSET) with A272C, S273C, and L274C. Before interpreting this as a picrotoxin-specific conformational change, it was necessary to eliminate the possibility of steric competition between picrotoxin and MTSET. Accordingly, we showed that picrotoxin and the structurally unrelated blocker, bilobalide, were both trapped in the R271C GlyR in the closed state and that a point mutation to the pore-lining Thr(6') residue abolished inhibition by both compounds. We also demonstrated that the picrotoxin dissociation rate was linearly related to the channel open probability. These observations constitute a strong case for picrotoxin binding in the pore. We thus conclude that the picrotoxin-specific effects on the M2 - M3 loop are mediated allosterically. This suggests that the M2 - M3 loop responds differently to the occupation of different binding sites.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The calcitonin gene-related peptide (CGRP) receptor is a heterodimer of a family B G-protein-coupled receptor, calcitonin receptor-like receptor (CLR), and the accessory protein receptor activity modifying protein 1. It couples to Gs, but it is not known which intracellular loops mediate this. We have identified the boundaries of this loop based on the relative position and length of the juxtamembrane transmembrane regions 3 and 4. The loop has been analyzed by systematic mutagenesis of all residues to alanine, measuring cAMP accumulation, CGRP affinity, and receptor expression. Unlike rhodopsin, ICL2 of the CGRP receptor plays a part in the conformational switch after agonist interaction. His-216 and Lys-227 were essential for a functional CGRP-induced cAMP response. The effect of (H216A)CLR is due to a disruption to the cell surface transport or surface stability of the mutant receptor. In contrast, (K227A)CLR had wild-type expression and agonist affinity, suggesting a direct disruption to the downstream signal transduction mechanism of the CGRP receptor. Modeling suggests that the loop undergoes a significant shift in position during receptor activation, exposing a potential G-protein binding pocket. Lys-227 changes position to point into the pocket, potentially allowing it to interact with bound G-proteins. His-216 occupies a position similar to that of Tyr-136 in bovine rhodopsin, part of the DRY motif of the latter receptor. This is the first comprehensive analysis of an entire intracellular loop within the calcitonin family of G-protein-coupled receptor. These data help to define the structural and functional characteristics of the CGRP-receptor and of family B G-protein-coupled receptors in general. © 2006 by The American Society for Biochemistry and Molecular Biology, Inc.