905 resultados para Classification Methods
Resumo:
In this paper we investigate whether conventional text categorization methods may suffice to infer different verbal intelligence levels. This research goal relies on the hypothesis that the vocabulary that speakers make use of reflects their verbal intelligence levels. Automatic verbal intelligence estimation of users in a spoken language dialog system may be useful when defining an optimal dialog strategy by improving its adaptation capabilities. The work is based on a corpus containing descriptions (i.e. monologs) of a short film by test persons yielding different educational backgrounds and the verbal intelligence scores of the speakers. First, a one-way analysis of variance was performed to compare the monologs with the film transcription and to demonstrate that there are differences in the vocabulary used by the test persons yielding different verbal intelligence levels. Then, for the classification task, the monologs were represented as feature vectors using the classical TF–IDF weighting scheme. The Naive Bayes, k-nearest neighbors and Rocchio classifiers were tested. In this paper we describe and compare these classification approaches, define the optimal classification parameters and discuss the classification results obtained.
Resumo:
In the spinal cord of the anesthetized cat, spontaneous cord dorsum potentials (CDPs) appear synchronously along the lumbo-sacral segments. These CDPs have different shapes and magnitudes. Previous work has indicated that some CDPs appear to be specially associated with the activation of spinal pathways that lead to primary afferent depolarization and presynaptic inhibition. Visual detection and classification of these CDPs provides relevant information on the functional organization of the neural networks involved in the control of sensory information and allows the characterization of the changes produced by acute nerve and spinal lesions. We now present a novel feature extraction approach for signal classification, applied to CDP detection. The method is based on an intuitive procedure. We first remove by convolution the noise from the CDPs recorded in each given spinal segment. Then, we assign a coefficient for each main local maximum of the signal using its amplitude and distance to the most important maximum of the signal. These coefficients will be the input for the subsequent classification algorithm. In particular, we employ gradient boosting classification trees. This combination of approaches allows a faster and more accurate discrimination of CDPs than is obtained by other methods.
Resumo:
In this paper, the fusion of probabilistic knowledge-based classification rules and learning automata theory is proposed and as a result we present a set of probabilistic classification rules with self-learning capability. The probabilities of the classification rules change dynamically guided by a supervised reinforcement process aimed at obtaining an optimum classification accuracy. This novel classifier is applied to the automatic recognition of digital images corresponding to visual landmarks for the autonomous navigation of an unmanned aerial vehicle (UAV) developed by the authors. The classification accuracy of the proposed classifier and its comparison with well-established pattern recognition methods is finally reported.
Resumo:
Automatic blood glucose classification may help specialists to provide a better interpretation of blood glucose data, downloaded directly from patients glucose meter and will contribute in the development of decision support systems for gestational diabetes. This paper presents an automatic blood glucose classifier for gestational diabetes that compares 6 different feature selection methods for two machine learning algorithms: neural networks and decision trees. Three searching algorithms, Greedy, Best First and Genetic, were combined with two different evaluators, CSF and Wrapper, for the feature selection. The study has been made with 6080 blood glucose measurements from 25 patients. Decision trees with a feature set selected with the Wrapper evaluator and the Best first search algorithm obtained the best accuracy: 95.92%.
Resumo:
Video-based vehicle detection is the focus of increasing interest due to its potential towards collision avoidance. In particular, vehicle verification is especially challenging due to the enormous variability of vehicles in size, color, pose, etc. In this paper, a new approach based on supervised learning using Principal Component Analysis (PCA) is proposed that addresses the main limitations of existing methods. Namely, in contrast to classical approaches which train a single classifier regardless of the relative position of the candidate (thus ignoring valuable pose information), a region-dependent analysis is performed by considering four different areas. In addition, a study on the evolution of the classification performance according to the dimensionality of the principal subspace is carried out using PCA features within a SVM-based classification scheme. Indeed, the experiments performed on a publicly available database prove that PCA dimensionality requirements are region-dependent. Hence, in this work, the optimal configuration is adapted to each of them, rendering very good vehicle verification results.
Resumo:
The multi-dimensional classification problem is a generalisation of the recently-popularised task of multi-label classification, where each data instance is associated with multiple class variables. There has been relatively little research carried out specific to multi-dimensional classification and, although one of the core goals is similar (modelling dependencies among classes), there are important differences; namely a higher number of possible classifications. In this paper we present method for multi-dimensional classification, drawing from the most relevant multi-label research, and combining it with important novel developments. Using a fast method to model the conditional dependence between class variables, we form super-class partitions and use them to build multi-dimensional learners, learning each super-class as an ordinary class, and thus explicitly modelling class dependencies. Additionally, we present a mechanism to deal with the many class values inherent to super-classes, and thus make learning efficient. To investigate the effectiveness of this approach we carry out an empirical evaluation on a range of multi-dimensional datasets, under different evaluation metrics, and in comparison with high-performing existing multi-dimensional approaches from the literature. Analysis of results shows that our approach offers important performance gains over competing methods, while also exhibiting tractable running time.
Resumo:
Multi-dimensional classification (MDC) is the supervised learning problem where an instance is associated with multiple classes, rather than with a single class, as in traditional classification problems. Since these classes are often strongly correlated, modeling the dependencies between them allows MDC methods to improve their performance – at the expense of an increased computational cost. In this paper we focus on the classifier chains (CC) approach for modeling dependencies, one of the most popular and highest-performing methods for multi-label classification (MLC), a particular case of MDC which involves only binary classes (i.e., labels). The original CC algorithm makes a greedy approximation, and is fast but tends to propagate errors along the chain. Here we present novel Monte Carlo schemes, both for finding a good chain sequence and performing efficient inference. Our algorithms remain tractable for high-dimensional data sets and obtain the best predictive performance across several real data sets.
Resumo:
Single photon emission with computed tomography (SPECT) hexamethylphenylethyleneamineoxime technetium-99 images were analyzed by an optimal interpolative neural network (OINN) algorithm to determine whether the network could discriminate among clinically diagnosed groups of elderly normal, Alzheimer disease (AD), and vascular dementia (VD) subjects. After initial image preprocessing and registration, image features were obtained that were representative of the mean regional tissue uptake. These features were extracted from a given image by averaging the intensities over various regions defined by suitable masks. After training, the network classified independent trials of patients whose clinical diagnoses conformed to published criteria for probable AD or probable/possible VD. For the SPECT data used in the current tests, the OINN agreement was 80 and 86% for probable AD and probable/possible VD, respectively. These results suggest that artificial neural network methods offer potential in diagnoses from brain images and possibly in other areas of scientific research where complex patterns of data may have scientifically meaningful groupings that are not easily identifiable by the researcher.
Resumo:
The use of computer programs to predict drug absorption in humans and to simulate dissolution profiles has become a valuable tool in the pharmaceutical area. The objective of this study was to use in silico methods through software GastroPlusTM and DDDPlusTM to simulate drug absorption curves and dissolution profiles, and to establish in vitro-in vivo correlations (IVIVCs). The work presented herein is divided into five chapters and includes the drugs ketoprofen, pyrimethamine, metronidazole, fluconazole, carvedilol and doxazosin. In Chapter 1, simulated plasma curves for ketoprofen matrix tablets are presented and IVIVC was established. The use of simulated intrinsic dissolution tests for pyrimethamine and metronidazole as a tool for biopharmaceutics classification is detailed in Chapter 2. In Chapter 3, simulation of plasma curves for fluconazole capsules with different dissolution profiles is demonstrated as a tool for biowaiver. IVIVC studies were also conducted for carvedilol immediate-release tablets from dissolution profiles in Chapter 4. Chapter 5 covers the application of simulated dissolution tests for development of doxazosin extended-release formulations. Simulation of plasma curves and IVIVC using the software GastroPlusTM as well as intrinsic dissolution tests and dissolution profiles using the software DDDPlusTM proved to be a tool of wide application in predicting biopharmaceutical characteristics of drugs and formulations, allowing the reduction of time and costs of experimental laboratory work.
Resumo:
Background: The harmonization of European health systems brings with it a need for tools to allow the standardized collection of information about medical care. A common coding system and standards for the description of services are needed to allow local data to be incorporated into evidence-informed policy, and to permit equity and mobility to be assessed. The aim of this project has been to design such a classification and a related tool for the coding of services for Long Term Care (DESDE-LTC), based on the European Service Mapping Schedule (ESMS). Methods: The development of DESDE-LTC followed an iterative process using nominal groups in 6 European countries. 54 researchers and stakeholders in health and social services contributed to this process. In order to classify services, we use the minimal organization unit or “Basic Stable Input of Care” (BSIC), coded by its principal function or “Main Type of Care” (MTC). The evaluation of the tool included an analysis of feasibility, consistency, ontology, inter-rater reliability, Boolean Factor Analysis, and a preliminary impact analysis (screening, scoping and appraisal). Results: DESDE-LTC includes an alpha-numerical coding system, a glossary and an assessment instrument for mapping and counting LTC. It shows high feasibility, consistency, inter-rater reliability and face, content and construct validity. DESDE-LTC is ontologically consistent. It is regarded by experts as useful and relevant for evidence-informed decision making. Conclusion: DESDE-LTC contributes to establishing a common terminology, taxonomy and coding of LTC services in a European context, and a standard procedure for data collection and international comparison.
Resumo:
Three HPLC methods were optimised for the determination of citric acid, succinic acid and ascorbic acid using a photodiode array detector and fructose, glucose and sucrose using a refractive index in twenty eight citrus juices. The analysis was completed in <16 min. Two different harvests were taken into account for this study. For the season 2011, ascorbic acid content was comprised between 19.4 and 59 mg vitamin C/100 mL; meanwhile for the season 2012, the content was slightly higher for most of the samples ranging from 33.5 to 85.3 mg vitamin C/100 mL. Moreover, the citric acid content in orange juices ranged between 9.7 and 15.1 g L−1, while for clementines the content was clearly lower (i.e. from 3.5 to 8.4 g L−1). However, clementines showed the highest sucrose content with values near to 6 g/100 mL. Finally, a cluster analysis was applied to establish a classification of the citrus species.
Resumo:
A new classification of microtidal sand and gravel beaches with very different morphologies is presented below. In 557 studied transects, 14 variables were used. Among the variables to be emphasized is the depth of the Posidonia oceanica. The classification was performed for 9 types of beaches: Type 1: Sand and gravel beaches, Type 2: Sand and gravel separated beaches, Type 3: Gravel and sand beaches, Type 4: Gravel and sand separated beaches, Type 5: Pure gravel beaches, Type 6: Open sand beaches, Type 7: Supported sand beaches, Type 8: Bisupported sand beaches and Type 9: Enclosed beaches. For the classification, several tools were used: discriminant analysis, neural networks and Support Vector Machines (SVM), the results were then compared. As there is no theory for deciding which is the most convenient neural network architecture to deal with a particular data set, an experimental study was performed with different numbers of neuron in the hidden layer. Finally, an architecture with 30 neurons was chosen. Different kernels were employed for SVM (Linear, Polynomial, Radial basis function and Sigmoid). The results obtained for the discriminant analysis were not as good as those obtained for the other two methods (ANN and SVM) which showed similar success.
Resumo:
Hypertrophic cardiomyopathy (HCM) is a cardiovascular disease where the heart muscle is partially thickened and blood flow is - potentially fatally - obstructed. It is one of the leading causes of sudden cardiac death in young people. Electrocardiography (ECG) and Echocardiography (Echo) are the standard tests for identifying HCM and other cardiac abnormalities. The American Heart Association has recommended using a pre-participation questionnaire for young athletes instead of ECG or Echo tests due to considerations of cost and time involved in interpreting the results of these tests by an expert cardiologist. Initially we set out to develop a classifier for automated prediction of young athletes’ heart conditions based on the answers to the questionnaire. Classification results and further in-depth analysis using computational and statistical methods indicated significant shortcomings of the questionnaire in predicting cardiac abnormalities. Automated methods for analyzing ECG signals can help reduce cost and save time in the pre-participation screening process by detecting HCM and other cardiac abnormalities. Therefore, the main goal of this dissertation work is to identify HCM through computational analysis of 12-lead ECG. ECG signals recorded on one or two leads have been analyzed in the past for classifying individual heartbeats into different types of arrhythmia as annotated primarily in the MIT-BIH database. In contrast, we classify complete sequences of 12-lead ECGs to assign patients into two groups: HCM vs. non-HCM. The challenges and issues we address include missing ECG waves in one or more leads and the dimensionality of a large feature-set. We address these by proposing imputation and feature-selection methods. We develop heartbeat-classifiers by employing Random Forests and Support Vector Machines, and propose a method to classify full 12-lead ECGs based on the proportion of heartbeats classified as HCM. The results from our experiments show that the classifiers developed using our methods perform well in identifying HCM. Thus the two contributions of this thesis are the utilization of computational and statistical methods for discovering shortcomings in a current screening procedure and the development of methods to identify HCM through computational analysis of 12-lead ECG signals.
Resumo:
The master thesis presents methods for intellectual analysis and visualization 3D EKG in order to increase the efficiency of ECG analysis by extracting additional data. Visualization is presented as part of the signal analysis tasks considered imaging techniques and their mathematical description. Have been developed algorithms for calculating and visualizing the signal attributes are described using mathematical methods and tools for mining signal. The model of patterns searching for comparison purposes of accuracy of methods was constructed, problems of a clustering and classification of data are solved, the program of visualization of data is also developed. This approach gives the largest accuracy in a task of the intellectual analysis that is confirmed in this work. Considered visualization and analysis techniques are also applicable to the multi-dimensional signals of a different kind.
Resumo:
Questions of handling unbalanced data considered in this article. As models for classification, PNN and MLP are used. Problem of estimation of model performance in case of unbalanced training set is solved. Several methods (clustering approach and boosting approach) considered as useful to deal with the problem of input data.