976 resultados para Chytrid Fungus
Resumo:
A new smut fungus, Ustilago lituana, is described and illustrated on the grass Triodia epactia from Western Australia. It is compared with the three known smut fungi on Triodia and a key for identifying these species is given.
Resumo:
The structures and manner with which Pseudocercospora macadamiae penetrates, colonises and proliferates from the pericarp of macadamia fruit was studied using scanning electron microscopy and fluorescence light microscopy. Germ tubes arising from conidia penetrated open stomata within 20 h of inoculation, without observation of specialised infection structures such as appressoria. Colonisation of the pericarp was intercellular, without observation of specialised intracellular infection structures such as haustoria, and was complete from the epidermis to the mesocarp. The fungus proliferated at the epidermis by the formation of conidiophores and conidia on substomatal and protuberant subepidermal stromata. These structures were not observed on the mesocarp surface. The onset of visual husk spot symptoms coincided with an increase in pathogen biomass on the pericarp surface. The progression of symptoms from tan-coloured spots to larger red-brown lesions coincided with the production of conidiophores from substomatal and protuberant subepidermal stromata. The darker the colour of the husk spot lesion, the more frequently protuberant subepidermal stromata were observed. These findings are discussed in the context of observation of other cercosporoid fungi.
Resumo:
The powdery mildew Phyllactinia chorisiae has been considered conspecific with P. guttata. A re-examination of the type material of P. chorisiae and another specimen showed that this fungus, unlike P. guttata, has dimorphic conidia and its anamorph does not belong to the genus Ovulariopsis, which is the typical anamorph for Phyllactinia species. This suggests that P. chorisiae is morphologically distinct from P. guttata and should no longer be accepted as a synonym. Re-evaluation of type material of Oidiopsis wissadulae revealed that it has monomorphic conidia (mostly lemon-shaped) and hemiendophytic mycelium, a combination of characters that clearly places this fungus in the genus Ovulariopsis. Emended descriptions of P. chorisiae and Ovulariopsis wissadulae are presented.
Resumo:
Biological control of weeds has been carried out in Fiji since 1911, when the seed-fly Ophiomyia lantanae was introduced in an attempt to control Lantana camara. In 1988, the thrips Liothrips mikaniae was introduced from Trinidad into the Solomon Islands in an attempt to undertake biocontrol of Mikania micrantha (mikania) in the Pacific. A small colony of the thrips was subsequently taken from the Solomon Islands to the Kerevat Lowlands Agricultural Experimental Station in New Britain, Papua New Guinea (PNG). Now two decades later and for the first time, a pathogenic rust fungus has been imported for use against mikania, one of Fiji’s and the Pacific’s worst invasive weeds.
Resumo:
Hendersonia osteospermi was found for the first time in Australia on leaf spots of the introduced invasive plant Chrysanthemoides monilifera ssp. rotundata (bitou bush) in coastal regions of New South Wales. Pathogenicity tests on species from 11 tribes in the family Asteraceae, demonstrated that H. osteospermi caused severe necrosis on leaves and stems of C. monilifera ssp. rotundata and its congener C. monilifera ssp. monilifera (boneseed). Small necrotic spots also developed on Osteospermum fruticosum and Dimorphotheca cuneata in the Calenduleae and on Helianthus annuus (sunflower) in the Heliantheae. None of the other plant species tested developed leaf spots, although H. osteospermi was re-isolated from senescent leaves of Cynara scolymus (globe artichoke) in the Cynareae and Vernonia cinerea in the Vernonieae. Single ascospores from ascomata of a Pleospora-like fungus found on diseased stems of bitou bush produced H. osteospermi in culture, which proved the anamorph/teleomorph connection. The ITS region of both a single-ascospore isolate and a single-conidium isolate were sequenced and found to be identical. The taxonomic status of H. osteospermi is re-examined and Austropleospora osteospermi gen. et sp. nov. is described as its teleomorph based on morphology, host range tests and DNA sequence analysis. The potential of A. osteospermi for the biological control of bitou bush and boneseed in Australia is discussed.
Resumo:
Spotted gum (Corymbia citriodora subsp. variegata and C. maculata) is a valuable source of commercial timber and suitable for a wide range of different soil types in eastern Australia. The main biological constraint to further expansion of spotted gum plantations is Quambalaria shoot blight caused by the fungus Quambalaria pitereka. Surveys conducted to evaluate the impact of Quambalaria shoot blight have shown that the disease is present in all spotted gum plantations and on a range of Corymbia species and hybrids in subtropical and tropical regions surveyed in eastern Australia. More recently, Q. eucalypti has also been identified from a range of Eucalyptus species in these regions. Both pathogens have also been found associated with foliage blight and die-back of amenity trees and Q. pitereka in native stands of Corymbia species, which is the probable initial infection source for plantations. Infection by Q. pitereka commonly results in the repeated destruction of the growing tips and the subsequent formation of a bushy crown or death of trees in severe cases. In comparison, Q. eucalypti causes small, limited lesions and has in some cases been associated with insect feeding. It has not been recorded as causing severe shoot and stem blight. A better understanding of factors influencing disease development and host-pathogen interactions is essential in the development of a disease management strategy for these poorly understood but important pathogens in the rapidly expanding eucalypt (Corymbia and Eucalyptus spp.) plantation industry in subtropical and tropical eastern Australia.
Resumo:
Displacement of the fungus Fusarium pseudograminearum from stubble by antagonists is a potential means of biocontrol of crown rot in cereals. The role of carbon and nitrogen nutrition in interactions between the pathogen and the antagonists Fusarium equiseti, Fusarium nygamai, Trichoderma harzianum and the non-antagonistic straw fungus Alternaria infectoria was investigated. Sole carbon source utilization patterns on Biolog plates were similar among the three Fusarium species, suggesting a possible role for competition. However, carbon niche overlap was unlikely to be important in antagonism by T. harzianum. Straw medium supplemented with sugars generally reduced the inhibitory effect of antagonists on growth of F. pseudograminearum in dual culture, indicating that availability of simple carbon sources does not limit antagonism. Adding nitrogen as urea, nitrate or ammonium to straw medium had little effect on antagonism by F. equiseti and F. nygamai, but ammonium addition removed the inhibitory effect of T. harzianum on growth of F. pseudograminearum. Displacement of F. pseudograminearum from straw by all fungi in a Petri dish assay was greater when urea or nitrate was used as a nitrogen source than with ammonium. All forms of nitrogen significantly increased displacement of F. pseudograminearum from straw under simulated field conditions when straws were either inoculated with T. harzianum or exposed to resident soil microbes. However, in 2 out of 3 experiments urea and nitrate were more effective than ammonium. The results suggest that availability of nitrogen, but not carbon, is limiting the activities of antagonists of F. pseudograminearum in straw, and the way nitrogen is applied can influence the rate of displacement and mortality of the pathogen in host residues.
Resumo:
Healthy hardwoods: A field guide to pests, diseases and nutritional disorders in subtropical hardwoods can be used to help identify the common damaging insects, fungi and nutritional disorders in young eucalypt (Eucalyptus and Corymbia species) plantations in subtropical eastern Australia. This guide includes photographs of each insect, fungus and nutritional disorder and the damage they cause, along with a brief description to aid identification. A brief host list for insects and fungi, including susceptibility and occurrence, is provided as a guide only. A hand lens will be useful, especially to identify fungi. Although it is possible to identify insects and fungi from these photographs, laboratory examination will sometimes be necessary. For example, microscopes and culturing media might be used to identify fungi. Information about four exotic pests and diseases has also been included in the Biosecurity threats chapter. Potentially, these would have a severe impact on plantation and natural forests if introduced into Australia. To prevent establishment of these pests, early detection and identification is crucial. If an exotic insect or disease is suspected, then an immediate response is required. Usually, the first response will be to contact the nearest Australian Quarantine and Inspection Service office or forestry agency to seek advice.
Resumo:
Abstract Quambalaria shoot blight, caused by the fungus Quambalaria pitereka, is a serious disease affecting the expanding eucalypt plantation estate in subtropical and tropical eastern Australia. Trees that are severely infected are often multi-stemmed and stunted and infection of young trees may give rise to poor form in mature trees. A spotted gum clonal trial provided the opportunity to investigate the impact of the disease on tree growth and factors influencing tree architecture (tree form), which affects wood quality. We measured the effect that Q. pitereka infection during plantation establishment (up to 6 months old) has on growth and tree architecture and productivity to age 3 years. Our results show that the pathogen has a significant impact on trees at plantation establishment, which results in a negative impact on wood quality, potentially reducing merchantable value at final harvest. Tree growth and form was significantly improved where germplasm with low susceptibility to Q. pitereka infection was used.
Resumo:
Cattle ticks and buffalo flies impose significant economic burdens on the Northern Australian cattle and dairy industries. With the increased temperatures expected under climate change the range of parasites such as these is likely to extend. Current control options for these ectoparasites are limited by problems associated with chemical resistance and residues. Fungal biopesticides offer a sustainable and promising alternative method of control. Laboratory and animal studies have established the potential for the fungus Metarhizium in tick control and provided data that suggests a secondary effect of buffalo fly control is possible. Small field trials are required to obtain a proof of concept for the control of ticks and buffalo flies on animals.
Resumo:
N-[2-Naphthyl]-glycine hydrazide has been shown for the first time as a potent inhibitor of the DNA-dependent RNA polymerase (EC 2.7.7.6) of Mycobacterium tuberculosis H37Rv. At a concentration of 10 to the power -9 M, the compound shows maximum inhibition of the enzyme, the inhibition being less at higher concentrations. It is suggested that the novel type of inhibition pattern may be due to hydrophobic interactions occurring between the molecules of the compound at higher concentrations. The finding that there is a shift in the max of the compound could also account for this phenomenon. The effect of this compound was also tested on DNA-dependent RNA polymerases from an eukaryotic fungus, Microsporum canis. At a concentration of 10 to the power-9 M it inhibits RNA polymerase II (32 percent) but not RNA polymerases I and III.
Resumo:
Sprouting of fast-growing broad-leaved trees causes problems in young coniferous stands, under power transmission lines and along roads and railways. Public opinion and the Finnish Forest Certification System oppose the use of chemical herbicides to control sprouting, which means that most areas with problems rely on mechanical cutting. However, cutting is a poor control method for many broad-leaved species because the removal of leaders can stimulate the sprouting of side branches and cut stumps quickly re-sprout. In order to be effective, cutting must be carried out frequently but each cut increases the costs, making this control method increasingly difficult and expensive once begun. As such, alternative methods for sprout control that are both effective and environmentally sound represent a continuing challenge to managers and research biologists. Using biological control agents to prevent sprouting has been given serious consideration recently. Dutch and Canadian researchers have demonstrated the potential of the white-rot fungus Chondrostereum purpureum (Pers. ex Fr.) Pouzar as a control agent of stump sprouting in many hardwoods. These findings have focused the attention of the Finnish forestry community on the utilization of C. purpureum for biocontrol purposes. Primarily, this study sought determines the efficacy of native C. purpureum as an inhibitor of birch stump sprouting in Finland and to clarify its mode of action. Additionally, genotypic variation in Finnish C. purpureum was examined and the environmental risks posed by a biocontrol program using this fungus were assessed. Experimental results of the study demonstrated that C. purpureum clearly affects the sprouting of birch: both the frequency of living stumps and the number of living sprouts per stump were effectively reduced by the treatment. However, the treatment had no effect on the maximum height of new sprouts. There were clear differences among fungal isolates in preventing sprouting and those that possessed high oxidative activities as measured in the laboratory inhibited sprouting most efficiently in the field. The most effective treatment time during the growing season was in early and mid summer (May July). Genetic diversity in Nordic and Baltic populations of C. purpureum was found to be high at the regional scale but locally homogeneous. This natural distribution of diversity means that using local genotypes in biocontrol programs would effectively prevent the introduction of novel genes or genotypes. While a biocontrol program using local strains of C. purpureum would be environmentally neutral, pruned birches that are close to the treatment site would have a high susceptibility to infect by the fungus during the early spring.
Resumo:
The development of biotechnology techniques in plant breeding and the new commercial applications have raised public and scientific concerns about the safety of genetically modified (GM) crops and trees. To find out the feasibility of these new technologies in the breeding of commercially important Finnish hardwood species and to estimate the ecological risks of the produced transgenic plants, the experiments of this study have been conducted as a part of a larger project focusing on the risk assessment of GM-trees. Transgenic Betula pendula and Populus trees were produced via Agrobacterium mediated transformation. Stilbene synthase (STS) gene from pine (Pinus sylvestris) and chitinase gene from sugar beet (Beta vulgaris) were transferred to (hybrid) aspen and birch, respectively, to improve disease resistance against fungal pathogens. To modify lignin biosynthesis, a 4-coumarate:coenzyme A ligase (4CL) gene fragment in antisense orientation was introduced into two birch clones. In in vitro test, one transgenic aspen line expressing pine STS gene showed increased resistance to decay fungus Phellinus tremulae. In the field, chitinase transgenic birch lines were more susceptible to leaf spot (Pyrenopeziza betulicola) than the non-transgenic control clone while the resistance against birch rust (Melampsoridium betulinum) was improved. No changes in the content or composition of lignin were detected in the 4CL antisense birch lines. In order to evaluate the ecological effects of the produced GM trees on non-target organisms, an in vitro mycorrhiza experiment with Paxillus involutus and a decomposition experiment in the field were performed. The expression of a transgenic chitinase did not disturb the establishment of mycorrhizal symbiosis between birch and P. involutus in vitro. 4CL antisense transformed birch lines showed retarded root growth but were able to form normal ectomycorrhizal associations with the mycorrhizal fungus in vitro. 4CL lines also showed normal litter decomposition. Unexpected growth reductions resulting from the gene transformation were observed in chitinase transgenic and 4CL antisense birch lines. These results indicate that genetic engineering can provide a tool in increasing disease resistance in Finnish tree species. More extensive data with several ectomycorrhizal species is needed to evaluate the consequences of transgene expression on beneficial plant-fungus symbioses. The potential pleiotropic effects of the transgene should also be taken into account when considering the safety of transgenic trees.
Resumo:
1. Changes in bacterial and fungal communities in chicken litter with high and low moisture content over a five week period during a single chicken grow out cycle in a poultry shed in subtropical Australia were investigated to study the association between specific microbes and odour production. 2. Microbial biomass, as indicated by DNA yields, was higher and community composition was more dynamic over time in moist compared with dry chicken litter. 3. Bacillus, Atopostipes and Aspergillus species increased in relative abundance in moist chicken litter samples over time reflecting the relatively high fitness and hence activity of these specific bacteria and this specific fungus in this environment.
Resumo:
Shoot blight symptom was found on persimmon (Diospyros kaki) in southern Western Australia in December 2010. The pathogen was isolated and identified as Diaporthe neotheicola on the basis of morphology, sequence analysis of the internal transcribed spacer (ITS) and the translation elongation factor 1-α (TEF). A pathogenicity test was conducted and Koch's postulates were fulfilled by re-isolation of the fungus from diseased tissues. This is the first report of D. neotheicola causing shoot blight on persimmon in Australia and worldwide. © 2012 Australasian Plant Pathology Society Inc.