382 resultados para Cholinergic
Resumo:
The effects of vasoactive intestinal polypeptide (VIP) and pituitary adenylate cyclase-activating polypeptide (PACAP27 and PACAP38) on isolated parasympathetic neurons of rat intracardiac and submandibular ganglia were examined under voltage clamp using whole-cell patch-clamp recording techniques. VIP and PACAP (less than or equal to 10 nm) selectively and reversibly increased the affinity of nicotinic acetylcholine receptor channels (nAChRs) for their agonists resulting in a potentiation of acetylcholine (ACh)-evoked whole-cell currents at low agonist concentrations. VIP-induced potentiation was observed with either ACh or nicotine as the cholinergic agonist. The VIP- but not the PACAP-induced potentiation of ACh-evoked currents was inhibited by [Ac-Tyr(1), D-Phe(2)]-GRF 1-29, amide (100 nm), a selective antagonist of VPAC(1) and VPAC(2) receptors; whereas the PACAP38- but not the VIP-induced potentiation was inhibited by 100 nm PACAP6-38, a PAC(1) and VPAC(2) receptor antagonist. The signal transduction pathway mediating VIP- and PACAP-induced potentiation of nicotinic ACh-evoked currents involves a pertussis toxin (PTX)-sensitive G-protein. Intracellular application of 200 mu m GTP gamma S or GDP beta S inhibited VIP-induced potentiation of ACh-evoked whole-cell currents. GTP gamma S alone potentiated ACh- and nicotine-evoked currents and the magnitude of these currents was not further increased by VIP or PACAP. The G-protein subtype modulating the neuronal nAChRs was examined by intracellular dialysis with antibodies directed against alpha(o), alpha(i-1,2), alpha(i-3) or beta G-protein subunits. Only the anti-G alpha(o) and anti-G beta antibodies significantly inhibited the effect of VIP and PACAP on ACh-evoked currents. The potentiation of ACh-evoked currents by VIP and PACAP may be mediated by a membrane-delimited signal transduction cascade involving the PTX-sensitive G(o) protein.
Resumo:
Subjects with Alzheimer's disease (AD) exhibit normal visually evoked potentials (VEP) to pattern reversal stimuli but a delayed P2 flash response. The pattern response may originate in the primary visual cortex via the geniculo-calcarine pathway while the flash P2 may originate in the association areas via the cholinergic-tectal pathway. We now show: a) that the pathology of AD is more prominent in the visual association areas B18/19 than in B17 and b) that the magnetic signal to flash and pattern may originate from B18/19 and B17 respectively.
Resumo:
The P2 visual evoked response in man has a cholinergic component while the P100 response has not. The P100 latency is significantly decreased after an oral dose of phenylalanine in man while the P2 signal is unaffected. Analyses of the P100 decrease shows no correlation with tyrosine levels but a significant positive correlation with plasma ane urine levels. A small group shows a P100 delay which correlated with increased neopterin levels only. Increased plasma total biopterins in man following a phenylalanine dose are due to rapidly increased tetrahydrobiopterin synthesis in the liver.
Resumo:
Kynurenine (KYN) is the first stable metabolite of the kynurenine pathway, the major route of tryptophan. (TRP) metabolIsm. In the liver, cortisol-inducible tIyptophan-2,3-dioxygenase (TDO) is the first enzyme and rate limiting step. In extrahepatic tissues, it is superceded by indoleamine-2,3-dioxygenase (IDO), an enzyme with a wider substrate specificity. Earlier work in this research group has found substantial elevations in plasma KYN in fasting Tourette's Syndrome (TS) patients with normal TRP and neopterin. The aim of our initial pilot study was to confirm this increase in KYN in fasting human TS patients compared with normal controls, and to see how changes in diet :ay influence certain kynurenine pathway variables. However, we failed to detect a change in plasma KYN, TRP, kynurenic acid (KYNA), neopterin or cortisol between the fasting TS and control groups. Moreover, none of the variables was affected by dietary status, and thus candidates selected for the larger cross-sectional study were permitted to eat and drink freely on the day that blood samples were submitted, but were requested to avoid products containing caffeine, aspirin or nicotine. In the cross-sectional study, TS patients exhibited significantly higher plasma KYN concentrations than controls, although the magnitude of the change was much smaller than originally found. This may be due to differences in detection procedure and the seasonal fluctuation of some biochemical variables, notably cortisol. The generalised increase in neopterin in the TS subject group, suggests a difference in the activity of cytokine-inducible IDO as a likely source for this elevated KYN. Other kynurenine pathway metabolites, specifIcally TRP, 3-hydroxykynurenine (HKY), 3-hydroxyanthranilic acid (HAA) and KYNA were unchanged. In view of recent speculation of the potential therapeutic effects of nicotine in TS, the lower KYN concentrations observed in TS smokers, compared with non-smoking TS patients, was another interesting finding. Tic-like movements, such as head-shakes (HS), which occur in rodents both spontaneously and following diverse drug treatments, closely resemble tic behaviours in humans. The animal tic model was used to examine what effects nicotine may have on shaking behaviours and on selected TRP metabolites. Acute systemic administration of nicotine to mice, produced a dose-dependent reduction in HS frequency (induced by the 5-HT2A/2C agonist DOl), which appeared to be mediated via central nicotinic cholinergic receptors, since mecamylamine pretreatment abolished this effect. Conversely, twice daily subcutaneous injections of nicotine for 7 days, led to an increase in spontaneous and DOI-induced HS. Chronic nicotine also caused a significant elevation m plasma and whole brain KYN concentrations, but plasma TRP, HKY, HAA and KYNA were unaltered. In addition, no change in brain 5-HT or 5-HIAA concentrations or 5-HT turnover, was found. Despite contrasting results from human and animal studIes, a role for nicotine in the mediation of tic-like movements is indicated. The relevance of the kynurenine pathway to TS and the potential role played by nicotine in modifying tic-like behaviours is discussed.
Resumo:
It is known that parallel pathways exist within the visual system. These have been described as magnocellular and parvocellular as a result of the layered organisation of the lateral geniculate nucleus and extend from the retina to the cortex. Dopamine (DA) and acetylcholine (ACH) are neurotransmitters that are present in the visual pathway. DA is present in the retina and is associated with the interplexiform cells and horizontal cells. ACH is also present in the retina and is associated with displaced amacrine cells; it is also present in the superior colliculus. DA is found to be significantly depleted in the brain of Parkinson's disease (PD) patients and ACH in Alzheimer's disease (AD) patients. For this reason these diseases were used to assess the function of DA and ACH in the electrophysiology of the visual pathway. Experiments were conducted on young normals to design stimuli that would preferentially activate the magnocellular or parvocellular pathway. These stimuli were then used to evoke visual evoked potentials (VEP) in patients with PD and AD, in order to assess the function of DA and ACH in the visual pathway. Electroretinograms (ERGs) were also measured in PD patients to assess the role of DA in the retina. In addition, peripheral ACH function was assessed by measuring VEPs, ERGs and contrast sensitivity (CS) in young normals following the topical instillation of hyoscine hydrobromide (an anticholinergic drug). The results indicate that the magnocellular pathway can be divided into two: a cholinergic tectal-association area pathway carrying luminance information, and a non-cholinergic geniculo-cortical pathway carrying spatial information. It was also found that depletion of DA had very little effect on the VEPs or ERGs, confirming a general regulatory function for this neurotransmitter.
Resumo:
Current knowledge of the long-term, low dose effects of carbamate (CB) anti-cholinesterases on skeletal muscle or on the metabolism and regulation of the molecular forms of acetylcholinesterase (AChE) is limited. This is largely due to the reversible nature of these inhibitors and the subtle effects they induce which has generally made their study difficult and preliminary investigations were conducted to determine suitable study methods. A sequential extraction technique was used to rapidly analyse AChE molecular form activity at the mouse neuromuscular junction and also in peripheral parts of muscle fibres. AChE in the synaptic cleft involved in the termination of cholinergic transmission was successfully assessed by the assay method and by an alternative method using a correlation equation which represented the relationship between synaptic AChE and the prolongation of extra-cellular miniature endplate potentials. It was found that inhibition after in vivo Carbamate (CB) dosing could not be maintained during tissue analysis because CB-inhibited enzyme complexes decarbamoylated vary rapidly and could not be prevented even when maintained on ice. The methods employed did not therefore give a measure of inhibition but presented a profile of metabolic responses to continual, low dose CB treatment. Repetitive and continual infusion with low doses of the CBs: pyridostigmine and physostigmine induced a variety of effects on mouse skeletal muscle. Both compounds induced a mild myopathy in the mouse diaphragm during continual infusion which was characterised by endplate deformation without necrosis; such deformation persisted on termination of treatment but had recovered slightly 14 days later. Endplate and non-endplate AChE molecular forms displayed selective responses to CB treatment. During treatment endplate AChE was reduced whereas non-endplate AChE was largely unaffected, and after treatment, endplate AChE recovered, whereas non-endplate AChE was up-regulated. The mechanisms by which these responses become manifest are unclear but may be due to CB-induced effects on nerve-mediated muscle activity, neurotrophic factors or morphological and physiological changes which arise at the neuromuscular junction. It was concluded that, as well as inhibiting AChE, CBs also influence the metabolism and regulation of the enzyme and induce persistent endplate deformation; possible detrimental effects of long-term, low-dose determination requires further investigation.
Resumo:
Differential clinical diagnosis of the parkinsonian syndromes,viz., Parkinson's disease (PD), progressive supranuclear palsy (PSP), dementia with Lewy bodies (DLB), multiple system atrophy (MSA), and corticobasal degeneration (CBD) can be difficult. Visual hallucinations, however, are a chronic complication of some parkinsonian disorders and their presence may be a useful aid to diagnosis. The visual hallucinations in parkinsonism are often recurrent, well-formed, and detailed and occur in a significant proportion of cases of DLB and PD but are less common in PSP, MSA, and CBD. Hallucinations in PD often occur later in the disease and are complex, with flickering lights, and illusionary misconceptions often preceding the most common manifestation, viz., stereotypical colourful images. Hallucinations in DLB, however, are often present earlier in the disease and are similar to those in the 'misidentification syndromes', 'visual agnosias', and in 'delerium' but differ from those produced by hallucinogenic drugs such as LSD. Most typically in DLB, the hallucinations involve people or animals invading the patient's home but may also include inanimate objects and the appearance of writing on walls or ceilings. Visual hallucinations may involve a number of brain mechanisms including a change in the balance of neurotransmitter activity between the cholinergic and monoaminergic systems and may be a specific consequence of Lewy body (LB) pathology in brain stem nuclei. Ocular and retinal pathology may also contribute to hallucinations by reducing occipital stimulation. Hence, in patients with unclassifiable or with indeterminate parkinsonian symptoms, the presence of visual hallucinations should be regarded as a 'red flag' symptom indicating underlying Lewy body pathology and therefore, supporting a diagnosis of PD or DLB rather than PSP, MSA, or CBD. The presence of early visual hallucinations would support a diagnosis of DLB rather than PD. © 2013 Nova Science Publishers, Inc. All rights reserved.
Resumo:
Since the earliest descriptions of Alzheimer's disease (AD), many theories have been advanced as to its cause. These include: (1) exacerbation of aging, (2) degeneration of anatomical pathways, including the cholinergic and cortico-cortical pathways, (3) an environmental factor such as exposure to aluminium, head injury, or malnutrition, (4) genetic factors including mutations of amyloid precursor protein (APP) and presenilin (PSEN) genes and allelic variation in apolipoprotein E (Apo E), (5) mitochondrial dysfunction, (6) a compromised blood brain barrier, (7) immune system dysfunction, and (8) infectious agents. This review discusses the evidence for and against each of these theories and concludes that AD is a multifactorial disorder in which genetic and environmental risk factors interact to increase the rate of normal aging ('allostatic load'). The consequent degeneration of neurons and blood vessels results in the formation of abnormally aggregated 'reactive' proteins such as ß-amyloid (Aß) and tau. Gene mutations influence the outcome of age-related neuronal degeneration to cause early onset familial AD (EO-FAD). Where gene mutations are absent and a combination of risk factors present, Aß and tau only slowly accumulate not overwhelming cellular protection systems until later in life causing late-onset sporadic AD (LO-SAD). Aß and tau spread through the brain via cell to cell transfer along anatomical pathways, variation in the pathways of spread leading to the disease heterogeneity characteristic of AD.
Resumo:
Background - The loss of cholinergic, dopaminergic and noradrenergic innervations seen in Parkinson's Disease Dementia (PDD) suggest a potential role for cholinesterase inhibitors. Concerns have been expressed about a theoretical worsening of Parkinson's disease related symptoms, particularly movement symptoms. Objectives - To assess the efficacy, safety, tolerability and health economic data relating to the use of cholinesterase inhibitors in PDD. Search methods - The trials were identified from the Specialized Register of the Cochrane Dementia and Cognitive Improvement Group on 19 April 2005 using the search term parkinson*. This register contains records from major health care databases and many ongoing trial databases and is updated regularly. Comprehensive searches of abstracts from major scientific meetings were performed. Pharmaceutical companies were approached for information regarding additional and ongoing studies. Selection criteria - Randomized, double-blind, placebo-controlled studies assessing the effectiveness of cholinesterase inhibitors in PDD. Inclusion and exclusion criteria were stated to limit bias. Data collection and analysis - Two reviewers (IM, CF) independently reviewed the quality of the studies utilizing criteria from the Cochrane Collaboration Handbook. Medications were examined separately and as a group. The outcome measures assessed were in the following domains: neuropsychiatric features, cognition, global impression, daily living activities, quality of life, burden on caregiver, Parkinsonian related symptoms, treatment acceptability as determined by withdrawal from trials, safety as determined by the frequency of adverse events, institutionalisation, death and health economic factors. Main results - A detailed and systematic search of relevant databases identified one published randomized, double-blind, placebo-controlled study (Emre 2004) involving 541 patients that compared rivastigmine with placebo. Rivastigmine produced statistically significant improvements in several outcome measures. On the primary cognitive measure, the ADAS-Cog, rivastigmine was associated with a 2.80 point ADAS-Cog improvement [WMD -2.80, 95% Cl -4.26 to -1.34, P = 0.0002] and a 2.50 point ADCS-ADL improvement [95% Cl 0.43 to 4.57, P = 0.02] relative to placebo. Clinically meaningful (moderate or marked) improvement occurred in 5.3% more patients on rivastigmine, and meaningful worsening occurred in 10.1% more patients on placebo. Tolerability appeared to be a significant issue. Significantly more patients on rivastigmine dropped out of the study due to adverse events [62/362 versus 14/179, OR 2.44, 95% Cl 1.32 to 4.48, P = 0.004]. Nausea [20/179 versus 105/362, OR 3.25, 95% Cl 1.94 to 5.45, P < 0.00001], tremor [7/179 versus 37/362, OR 2.80, 95% Cl 1.22 to 6.41, P = 0.01] and in particular vomiting [3/179 versus 60/362, OR 11.66, 95% Cl 3.60 to 37.72, P < 0.0001] were significantly more common with rivastigmine. However, significantly fewer patients died on rivastigmine than placebo [4/362 versus 7/179, OR 0.27, 95% CI 0.08 to 0.95, P = 0.04] Authors' conclusions - Rivastigmine appears to improve cognition and activities of daily living in patients with PDD. This results in clinically meaningful benefit in about 15% of cases. There is a need for more studies utilising pragmatic measures such as time to residential care facility and both patient and carer quality of life assessments. Future trials should involve other cholinesterase inhibitors, utilise tools to analyse the data that limit any bias and measure health economic factors. It is unlikely that relying solely on the last observation carried forward (LOCF) is sufficient. Publication of the observed case data in the largest trial would assist (Emre 2004). Adverse events were associated with the cholinergic activity of rivastigmine, but may limit patient acceptability as evidenced by the high drop out rate in the active arm.
Resumo:
The link between off-target anticholinergic effects of medications and acute cognitive impairment in older adults requires urgent investigation. We aimed to determine whether a relevant in vitro model may aid the identification of anticholinergic responses to drugs and the prediction of anticholinergic risk during polypharmacy. In this preliminary study we employed a co-culture of human-derived neurons and astrocytes (NT2.N/A) derived from the NT2 cell line. NT2.N/A cells possess much of the functionality of mature neurons and astrocytes, key cholinergic phenotypic markers and muscarinic acetylcholine receptors (mAChRs). The cholinergic response of NT2 astrocytes to the mAChR agonist oxotremorine was examined using the fluorescent dye fluo-4 to quantitate increases in intracellular calcium [Ca2+]i. Inhibition of this response by drugs classified as severe (dicycloverine, amitriptyline), moderate (cyclobenzaprine) and possible (cimetidine) on the Anticholinergic Cognitive Burden (ACB) scale, was examined after exposure to individual and pairs of compounds. Individually, dicycloverine had the most significant effect regarding inhibition of the astrocytic cholinergic response to oxotremorine, followed by amitriptyline then cyclobenzaprine and cimetidine, in agreement with the ACB scale. In combination, dicycloverine with cyclobenzaprine had the most significant effect, followed by dicycloverine with amitriptyline. The order of potency of the drugs in combination frequently disagreed with predicted ACB scores derived from summation of the individual drug scores, suggesting current scales may underestimate the effect of polypharmacy. Overall, this NT2.N/A model may be appropriate for further investigation of adverse anticholinergic effects of multiple medications, in order to inform clinical choices of suitable drug use in the elderly.
Resumo:
Background: In 2008, the Anticholinergic Cognitive Burden (ACB) scale was generated through a combination of laboratory data, literature review, and expert opinion. This scale identified an increased risk in mortality and worsening cognitive function in multiple populations, including 13,000 older adults in the United Kingdom. We present an updated scale based on new information and new medications available to the market. Methods: We conducted a systematic review for publications recognizing medications with adverse cognitive effects due to anti-cholinergic properties and found no new medications since 2008.Therefore we identified medications from a review of newly ap-proved medications since 2008 and medications identified throughthe clinical experience of the authors. To be included in the updatedACB scale, medications must have met the following criteria; ACBscore of 1: evidence from in vitro data that the medication has antag-onist activity at muscarinic receptors; ACB score of 2: evidence fromliterature, prescriber’s information, or expert opinion of clinical anti-cholinergic effect; ACB score of 3: evidence from literature, pre-scriber’s information, or expert opinion of the medication causingdelirium. Results: The reviewer panel included two geriatric pharmacists,one geriatric psychiatrist, one geriatrician, and one hospitalist.Twenty-three medications were eligible for review and possible inclu-sion in the updated ACB scale. Of these, seven medications were ex-cluded due to a lack of evidence for anticholinergic activity. Of the re-maining 16 medications, ten had laboratory evidence ofanticholinergic activity and added to the ACB list with a score of one.One medication was added with a score of two. Five medicationswere included in the ACB scale with a score of three.Conclusions: The revised ACB scale provides an update of med-ications with anticholinergic effects that may increase the risk of cog-nitive impairment. Future updates will be routinely conducted tomaintain an applicable library of medications for use in clinical andresearch environments.
Resumo:
Background: Anticholinergic medications may be associated with adverse clinical outcomes, including acute impairments in cognition and anticholinergic side effects, the risk of adverse outcomes increasing with increasing anticholinergic exposure. Older people with intellectual disability may be at increased risk of exposure to anticholinergic medicines due to their higher prevalence of comorbidities. We sought to determine anticholinergic burden in ageing people with intellectual disability. Methods: Medication data (self-report/proxy-report) was drawn from Wave 1 of the Intellectual Disability Supplement to the Irish Longitudinal Study on Ageing (IDS-TILDA), a study on the ageing of 753nationally representative people with an IDC40 years randomly selected from the National Intellectual Disability Database. Each individual’s cumulative exposure to anticholinergic medications was calculated using the Anticholinergic Cognitive Burden Scale (ACB) amended by a multi-disciplinary group with independent advice to account for the range of medicines in use in this population. Results: Overall, 70.1 % (527) reported taking medications with possible or definite anticholinergic properties (ACBC1), with a mean (±SD) ACB score of 4.5 (±3.0) (maximum 16). Of those reporting anticholinergic exposure (n=527), 41.3 % (217) reported an ACB score o fC5. Antipsychotics accounted for 36.4 % of the total cumulative ACB score followed by anticholinergics (16 %) and antidepressants (10.8 %). The most frequently reported medicine with anticholinergic activity was carbamazepine 16.8 % (127). The most frequently reported medicine with high anticholinergic activity (ACB 3) was olanzapine13.4 % (101). There was a significant association between higher anti-cholinergic exposure and multimorbidity, particularly mental health morbidity, and some anticholinergic adverse effects such as constipation and day-time drowsiness but not self-rated health. Conclusion: Using simple cumulative measures proved an effective means to capture total burden and helped establish that anticholinergic exposure in the study population was high. The finding highlights the need for comprehensive reviews of medications.
Resumo:
Theta rhythm consists of an electrophysiological hippocampal oscillation present in mammalian species (4-12 Hz with variations across species). This oscillation is present during active waking and is also prevalent in local field potentials (LFP) during rapid eye movement sleep (REM sleep). Several studies have shown that theta rhythm is important in cognitive tasks and that the medial septum is a key region for its occurrence. The septum sends cholinergic, GABAergic and glutamatergic projections to the hippocampus, which in turn projects axons to the septum. Besides the septum, other regions are involved in regulating theta rhythm, forming a complex network of interactions among brain areas that result in theta rhythm. Optogenetics is a recently developed method that has been widely used in various research areas. It allows us to manipulate the electrical activity of neurons through light stimulation. One of the existing techniques consists in using a viral vector to induce the neuronal expression of ion channels associated with the light-sensitive molecule rhodopsin (e.g. ChR2). Once infected, the neurons become sensitive to light of a particular wavelength. The present M. Sc. research aimed to perform luminous stimulation of the brain in anesthetized and freely behaving animals using chronically implanted electrodes and optical fibers in animals infected with a viral vector for ChR2 expression. Surgical viral injections were performed in the medial septum; histological results confirmed the expression of ChR2 by way of the presence of the eYFP reporter protein in the septum and also in hippocampal processes. Moreover, we performed acute experiments with luminous stimulation of the medial septum and LFP recordings of the septum and hippocampus of anesthetized animals. Action potentials were recorded in the septum. In these experiments we observed a significant increase in the firing rates of septal neurons during luminous stimulation (n = 300 trials). Furthermore, we found an early light-evoked response in the hippocampal LFP. Chronic experiments with luminous stimulation of the medial septum and hippocampus in freely behaving animals were also performed in combination with LFP recordings. We found that the luminous stimulation of the septum is able to induce theta rhythm in the hippocampus. Together, the results demonstrate that the luminous stimulation of the medial septum in optogenetically-modified animals causes relevant electrophysiological changes in the septum and the hippocampus.
Resumo:
Nicotine administration in humans and rodents enhances memory and attention, and also has a positive effect in Alzheimer's Disease. The Medial Septum / Diagonal Band of Broca complex (MS/DBB) – a main cholinergic system – massively projects to the hippocampus through the fimbria-fornix, and this pathway is called the septohippocampal pathway. It has been demonstrated that the MS/DBB acts directly on the local field potential (LFP) rhythmic organization of the hippocampus, especially in the rhythmogenesis of Theta (4-8Hz) – an oscillation intrinsically linked to hippocampus mnemonic function. In vitro experiments gave evidence that nicotine applied to the MS/DBB generates a local network Theta rhythm within the MS/DBB. Thus, the present study proposes to elucidate the function of nicotine in the MS/DBB on the septo-hippocampal pathway. In vivo experiments compared the effect of MS/DBB microinfusion of saline (n=5) and nicotine (n=8) on Ketamine/Xylazine anaesthetized mice. We observed power spectrum density in the Gamma range (35 to 55 Hz) increasing in both structures (Wilcoxon Rank-Sum test, p=0.038) but with no change in coherence between these structures in the same range (Wilcoxon Rank-Sum test, p=0.60). There was also a decrease in power of the ketamineinduced Delta oscillation (1 to 3 Hz). We also performed in vitro experiments on the effect of nicotine on membrane voltage and action potential. We patch-clamped 22 neurons in current-clamp mode; 12 neurons were responsive to nicotine, half of them increased firing rate and other 6 decreased, and they significantly differed in action potential threshold (-47.3±0.9 mV vs. -41±1.9 mV, respectively, p=0.007) and halfwidth time (1.6±0.08 ms vs. 2±0.12 ms, respectively, p=0.01). Furthermore, we performed another set of in vitro experiments concerning the connectivity of the three major neuronal populations of MS/DBB that use acetylcholine, GABA or glutamate as neurotransmitter. Paired patch-clamp recordings found that glutamatergic and GABAergic neurons realize intra-septal connections that produce sizable currents in MS/DBB postsynaptic neurons. The probability of connectivity between different neuronal populations gave rise to a MS/DBB topology that was implemented in a realistic model, which corroborates that the network is highly sensitive to the generation of Gamma rhythm. Together, the data available in the full set of experiments suggests that nicotine may act as a cognitive enhancer, by inducing gamma oscillation in the local circuitry of the MS/DBB.
Resumo:
L’élucidation de la position qu’occupent les projections sérotoninergique (5-HT), cholinergique (ACh) et dopaminergique (DA) du tronc cérébral dans l’organisation anatomofonctionelle du globus pallidus externe (GPe) et interne (GPi) au sein des ganglions de la base chez le primate est primordiale à la compréhension de ce système neuronal hautement complexe impliqué dans le contrôle du comportement moteur. Les travaux de recherche consolidés dans la présente thèse rapportent les résultats principalement obtenus chez le singe écureuil (Saimiri sciureus) à l’aide de marquages immunohistochimiques et de quantifications stéréologiques servant à évaluer la distribution régionale et les caractéristiques ultrastructurales des varicosités axonales 5-HT, ACh et DA observées dans le pallidum. Nos données ont permis l’éloboration d’un nouveau modèle du neurone pallidal en tenant compte de la hiérarchie et des caractéristiques neurochimiques de ses entrées synaptiques. Ainsi, l’analyse quantitative en microscopie optique révèle que le GPe et le GPi reçoivent des innervations 5-HT, ACh et DA de densités variables et distribuées de façon hétérogène. Plus particulièrement, le GPe est innervé par 600 000 varicosités 5-HT/mm3 de tissu, 500 000 varicosités ACh/mm3 et 170 000 varicosités DA/mm3. En revanche, le GPi reçoit 600 000 varicosités 5-HT/mm3, 250 000 varicosités ACh/mm3 et 190 000 varicosités DA/mm3. De plus, la 5-HT, l’ACh et la DA ciblent préférentiellement les secteurs correspondant aux territoires fonctionnels associatifs et limbiques du pallidum, suggérant un rôle de ces projections dans la planification du comportement moteur ainsi que dans la régulation de l’attention et de l’humeur. Nos analyses en microscopie électronique révèlent que très peu de ces varicosités axonales établissent un contact synaptique, puisque plus de 70% des varicosités 5-HT, ACh et DA sont complètement dépouvues de jonction synaptique. Ainsi, bien que la 5-HT, l’ACh et la DA seraient en mesure de moduler directement les neurones pallidaux grâce à la transmission synaptique, leur plus grande influence s’opérerait par la transmission volumique, permettant d’influencer à la fois les neurones pallidaux et leurs afférences, principalement du striatum et noyau subthalamique. L’ensemble de ces résultats indique que les projections 5-HT, ACh et DA du tronc cérébral agissent de concert avec les afférences plus robustes en provenance du striatum et du noyau subthalamique. Ces nouvelles données neuroanatomiques positionnent le tronc cérébral en tant qu’acteur important dans l’organisation anatomique et fonctionnelle du pallidum chez le primate et doivent être prises en considération dans l’élaboration de nouvelles approches thérapeutiques visant à contrer les processus neurodégénératifs qui affectent les ganglions de la base, tel que la maladie de Parkinson.