913 resultados para Chlorine Industry, Electrochemical Processes, Photovoltaic, Sodium Chloride, Solar Energy
Resumo:
"December 1980."
Resumo:
Item 231-B-1
Resumo:
A number of factors relating to various methods of repair for chloride initiated corrosion damage of reinforced concrete have been studied. A novel methodology has been developed to facilitate the measurement of macro and micro-cell corrosion rates for steel electrodes embedded in mortar prisms containing a chloride gradient. The galvanic bar specimen comprised electrically isolatable segmental mild steel electrodes and was constructed such that macro-cell corrosion currents were determinable for a number of electrode combinations. From this, the conditions giving rise to an incipient anode were established. The influence of several reinforcement and substrate primer systems upon macro-cell corrosion, arising from an incipient anode, within a patch repair have been investigated. Measurements of electrochemical noise were made in order to investigate the suitability of the technique as an on-site means of assessing corrosion activity within chloride contaminated reinforced concrete. For this purpose the standard deviation of potential noise was compared to macro-cell galvanic current data and micro-cell corrosion intensity determined by linear polarisation. Hydroxyl ion pore solution analyses were carried out on mortar taken from cathodically protected specimens. These specimens, containing sodium chloride, were cathodically protected over a range of polarisation potentials. Measurement of the hydroxyl ion concentrations were made in order to examine the possibility of alkali-silica reactions initiated by cathodic protection of reinfored concrete. A range of mortars containing a variety of generic type additives were examined in order to establish their resistances to chloride ion diffusion. The effect of surfactant addition rate was investigated within a cement paste containing various dosages of naphthalene sulphonate.
Resumo:
The diatomite is a natural material that has numerous applications due to changes in their physical and chemical properties after processing. It is currently used in the industry as a sound insulator , filter aid and industrial load . The filter material shall be inert chemical composition , which will diatomite confers a high commercial value and performance not found in other particulate materials , for this application. The diatomite surface undergoes changes after thermal treatment at high temperatures , from 800ºC , with properties that enable its application in the food , beverage , pharmaceutical , cosmetic and textiles . In this work , we developed a study on thermal treatment on natural diatomite to adapt their properties to the application as a filter aid . The heat treatments were performed in an open oven at temperatures of 800ºC , 1000ºC and 1200ºC for a time of 24 hours. Reagents were added in the constitution of the samples analyzed. The reagents used were sodium carbonate (Na2CO3 ) and sodium chloride (NaCl) . The samples were characterized by x - ray diffraction , x -ray fluorescence , scanning electron microscopy , analysis and particle size distribution , specific surface area by the BET method , and pore volume by BJH method. The results showed a reduction in porosity of the material as well as a significant increase in specific surface area after heat treatment and the reactants in the ratio of 3 wt%. The diatomaceous earth , after heat treatment , undergone changes in its coloration , varying in white, cream and beige , which directly interferes with the speed of filtration materials process. All results obtained before and after heat treatment of the material with the values obtained for samples already used industrially , Brazilian and American industry , which were characterized using the same test methods performed with the samples in the study were compared and showed promising efficiency when material studied in the region of Punaú - RN , after processing , reagent addition and heat treatment, as an element in the composition of filter .
Resumo:
It presents a solar oven manufactured from MDF boards intended for the baking of foods such as pizza, cakes, breads, hamburgers and the like. They will be given the manufacturing processes and assembly of such an oven which has features of low cost manufacturing. The main feature of the proposed furnace and can be transported to any locations because it is seated on a device for carrying case / backpack. Tests will be conducted for the baking of various foods and their results will be compared with the various types of existing solar ovens shown by the literature. They will analyze the thermal and economic feasibility of such an oven that can provide socialization of the use of solar energy for poor communities and can become a source of generation of employment and income. The proposed solar oven baking has capacity for two foods and can be manufactured to allow multiple simultaneous baking of food.
Resumo:
Composition, structure and occurrence of native aluminium in bottom sediments of the Northeast Pacific at Station DM9-647 are reported.
Resumo:
The realization of an energy future based on safe, clean, sustainable, and economically viable technologies is one of the grand challenges facing modern society. Electrochemical energy technologies underpin the potential success of this effort to divert energy sources away from fossil fuels, whether one considers alternative energy conversion strategies through photoelectrochemical (PEC) production of chemical fuels or fuel cells run with sustainable hydrogen, or energy storage strategies, such as in batteries and supercapacitors. This dissertation builds on recent advances in nanomaterials design, synthesis, and characterization to develop novel electrodes that can electrochemically convert and store energy.
Chapter 2 of this dissertation focuses on refining the properties of TiO2-based PEC water-splitting photoanodes used for the direct electrochemical conversion of solar energy into hydrogen fuel. The approach utilized atomic layer deposition (ALD); a growth process uniquely suited for the conformal and uniform deposition of thin films with angstrom-level thickness precision. ALD’s thickness control enabled a better understanding of how the effects of nitrogen doping via NH3 annealing treatments, used to reduce TiO2’s bandgap, can have a strong dependence on TiO2’s thickness and crystalline quality. In addition, it was found that some of the negative effects on the PEC performance typically associated with N-doped TiO2 could be mitigated if the NH3-annealing was directly preceded by an air-annealing step, especially for ultrathin (i.e., < 10 nm) TiO2 films. ALD was also used to conformally coat an ultraporous conductive fluorine-doped tin oxide nanoparticle (nanoFTO) scaffold with an ultrathin layer of TiO2. The integration of these ultrathin films and the oxide nanoparticles resulted in a heteronanostructure design with excellent PEC water oxidation photocurrents (0.7 mA/cm2 at 0 V vs. Ag/AgCl) and charge transfer efficiency.
In Chapter 3, two innovative nanoarchitectures were engineered in order to enhance the pseudocapacitive energy storage of next generation supercapacitor electrodes. The morphology and quantity of MnO2 electrodeposits was controlled by adjusting the density of graphene foliates on a novel graphenated carbon nanotube (g-CNT) scaffold. This control enabled the nanocomposite supercapacitor electrode to reach a capacitance of 640 F/g, under MnO2 specific mass loading conditions (2.3 mg/cm2) that are higher than previously reported. In the second engineered nanoarchitecture, the electrochemical energy storage properties of a transparent electrode based on a network of solution-processed Cu/Ni cores/shell nanowires (NWs) were activated by electrochemically converting the Ni metal shell into Ni(OH)2. Furthermore, an adjustment of the molar percentage of Ni plated onto the Cu NWs was found to result in a tradeoff between capacitance, transmittance, and stability of the resulting nickel hydroxide-based electrode. The nominal area capacitance and power performance results obtained for this Cu/Ni(OH)2 transparent electrode demonstrates that it has significant potential as a hybrid supercapacitor electrode for integration into cutting edge flexible and transparent electronic devices.
Resumo:
The dietary intake of sodium chloride has increased considerably over the last few decades due to changes in the human diet. This higher intake has been linked to a number of diseases including hypertension and other cardiovascular diseases. Numerous international health agencies, as well as the food industry, have now recommended a salt intake level of 5-6 g daily, approximately half of the average current daily intake level. Cereal products, and in particular bread, are a major source of salt in the Western diet. Therefore, any reduction in the level of salt in bread could have a major impact on global health. However, salt is a critical ingredient in bread production, and its reduction can have a deleterious effect on the production process as well as on the final bread quality characteristics such as shelf-life, bread volume and sensory characteristics, all deviating from the bakers’ and consumers’ expectations. This work addresses the feasibility of NaCl reduction in wheat bread focusing on options to compensate NaCl with the use of functional sourdoughs. Three strains were used for the application of low-salt bread; L. amylovorus DSM19280, W. cibaria MG1 and L. reuteri FF2hh2. The multifunctional strain L. reuteri FF2hh2 was tested the first time and its application could be demonstrated successfully. The functionalities were based on the production of exopolysaccharides as well as the production of antifungal compounds. While the exopolysaccharides, mainly high molecular dextrans, positively influenced mainly bread loaf volume, crumb structure and staling rate, the strains producing antifungal compounds prolonged the microbial shelf life significantly and compensated the lack of salt. The impact on the sensory characteristics of bread were evaluated by descriptive sensory evaluation. The increase in surface area as well as the presence of organic acids impacted significantly on the flavour profile of the sourdough bread samples. The flavour attribute “salt” could be enhanced by sourdough addition and increased the salty perception. Furthermore, a trained sensory panel evaluated for the first time the impact of yeast activity, based on different salt and yeast concentrations, on the volatile aroma profile of bread crumb samples. The analytical measurements using high resolution gas chromatography and proton-transfer-reaction mass spectrometry (PTR-MS) resulted in significantly different results based on different yeast activities. Nevertheless, the extent of the result could not be recognised by the sensory panel analysing the odour profile of the bread crumb samples. Hence, the consumer cannot recognised low-salt bread by its odour. The use of sourdough is a natural option to overcome the broad range of technological issues caused by salt reduction and also a more popular alternative compared to existing chemical salt replacers.
Resumo:
Found in the nature in form different, the iodine has been used in diverse works in the area of the industry and health. The iodine is very unstable and volatile in the ambient temperature and the I2 is one of the diverse gaseous forms found. In this work was developed methodology for production of gaseous tracer from the sodium iodide (NaI) 0,1 M marked with 123I. The synthesis was processed with in chlorine acid (HCl) 1M and sodium iodate salt (NaIO3). The production of gas I2 initially was carried through in unit of glass with the inert material and the purpose was to study the kinetic of reaction. The synthesis occurs in the reaction bottle and the produced gas is stored in the collect bottle that contains a starch solution (5 g/100 mL water). To determine the efficiency of production of gas I2, analytic tests had been carried through, where the consumption of iodide ions of the bottle of reaction is measured. The optimization of production of the gaseous tracer was studied varying parameters as: concentration of iodide and iodate, concentration of acid and temperature. Then, the synthesis of the radiotracer was realized in the compact unit, being utilized as main reagent the salt radiated of sodium iodide, Na123I. The transportation of elementary iodine was studied by a scintillation detector NaI (2 x 2)” placed in the reaction bottle. To acquire the data, the detector use a set of electronic modules for the acquisition of signals generated.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-08
Resumo:
Los anuncios de impacto por cambio climático han llevado a los países a crear estrategias de mitigación y adaptación, dentro de las cuales se considera la promoción de generación de electricidad a través de fuentes renovables no convencionales -- El avance logrado ha incentivado a los usuarios del servicio de energía eléctrica a invertir en plantas de generación, eliminando la necesidad parcial de utilizar las redes de transmisión y distribución del sistema eléctrico, de tal forma que las redes eléctricas presentan una holgura gradual en cuanto a la energía que se transporta a través de ellas -- Este artículo presenta un análisis del impacto sobre los ingresos operacionales de una empresa distribuidora de energía por efecto de la entrada de soluciones de energía solar fotovoltaica en el segmento residencial de su área de influencia, encontrando que se generarían diferentes escalas de afectación, con valores de hasta el 3%
Resumo:
Jerked beef, an industrial meat product obtained from beef with the addition of sodium chloride and curing salts and subjected to a maturing and drying process is a typical Brazilian product which has been gradually discovered by the consumer. The replacement of synthetic antioxidants by natural substances with antioxidant potential due to possible side effects discovered by lab tests, consumer health, is being implemented by the meat industry. This study aimed to evaluate the lipid oxidation of jerked beef throughout the storage period by replacing the sodium nitrite by natural extracts of propolis and Yerba Mate. For jerked beef processing brisket was used as raw material processed in 6 different formulations: formulation 1 (control - in nature), formulation 2 (sodium nitrite - NO), formulation 3 (Yerba Mate - EM), formulation 4 (propolis extract - PRO), formulation 5 (sodium nitrite + Yerba Mate - MS + NO), formulation 6 (propolis extract + sodium nitrite - PRO + NO). The raw material was subjected to wet salting, dry salting (tombos), drying at 25°C, packaging and storage in BOD 25°C. Samples of each formulation were taken every 7 days for analysis of lipid oxidation by the TBARS method. In all formulations, were carried out analysis of chemical composition at time zero and sixty days of storage. The water activity analysis and color (L *, a *, b *) was monitored at time zero, thirty and sixty days of storage. The Salmonella spp count, Coliform bacteria, Termotolerant coliforms and coagulase positive staphylococci were taken at time zero and sixty days. The activity of natural antioxidants evaluated shows the decline of lipid oxidation up to 2.5 times compared with the product in natura and presented values with no significant differences between treatments NO and EM, confirming the potential in minimize lipid oxidation of Jerked beef throughout the 60 days of storage. The results also showed that yerba mate has a higher antioxidant capacity compared to the propolis except the PRO + NO formulation. When associated with yerba mate with sodium nitrate, TBARS values become close to values obtained only for the control samples with the addition of sodium nitrite. The proximal composition of the formulations remained within the standards required in the IN nº22/2000 for jerked beef. Samples that differ significantly at 5% are directly related to the established type of formulation. The count of microorganisms was within the standards of the DRC nº12/2001 required for matured meat products. The intensity of the red (a*) decreased with storage time and increase the intensity of yellow (b*) indicates a darkening of the product despite L* also have been increased. These results suggest that yerba mate is a good alternative to meat industry in reducing healing addition salts when associated with another antioxidant.
Resumo:
Uma alternativa para pescados subaproveitados e subprodutos da industrialização de pescado é o desenvolvimento de processos para recuperação e/ou alteração das proteínas musculares de pescados. O objetivo deste trabalho foi a obtenção de hidrolisados protéicos de carne mecanicamente separada (CMS) de anchoita (Engraulis anchoita) e a avaliação da sua atividade antioxidante, aplicando-os bem embutido preparado com o surimi de anchoita. Foram produzidos diferentes hidrolisados com as enzimas microbianas Alcalase, Flavourzyme e Protamex, fixando a concentração de substrato e de enzima e os parâmetros pH e temperatura foram variados. Os hidrolisados foram efetivos contra a inibição da peroxidação lipídica (43,8±0,2%) e no poder redutor, onde o hidrolisado com a enzima Flavourzyme em 1 hora de reação mostrou-se mais efetivo. No seqüestro de radicais livres, como o DPPH, o hidrolisado com a enzima Flavourzyme, obtido em tempo de hidrólise de 5 horas, alcançou valores acima de 45,0% em concentração de 5 mg/mL. Na produção de surimi foram testadas lavagens da CMS de anchoita com soluções de bicarbonato de sódio 0,5%, ácido fosfórico 0,05% e cloreto de sódio 0,3%. O maior rendimento (90,5%) e uma coloração mais clara (W= 50,24±1,81) foram encontrados no surimi obtido por lavagens com bicarbonato de sódio e cloreto de sódio (BS), em comparação ao surimi que se utilizou água, ácido fosfórico e cloreto de sódio (AF) ou com soluções de cloreto de sódio, ácido fosfórico e bicarbonato de sódio (AB). Na força de gel o surimi AF (1154,25 ± 4,37 g.mm) obteve maior valor, sendo utilizado para a produção de salsichas. Foram analisadas diferentes concentrações de surimi (70, 75 e 80%) em salsichas, que foram submetidas às análises de cor e textura. Não houve influência da concentração de surimi nas características tecnológicas da salsicha, exceto nos valores de luminosidade. A salsicha com 75% de surimi de anchoita foi caracterizada pela composição proximal, valor energético total (VET) e conteúdo de sódio. A salsicha com surimi e comercial apresentou composição semelhante. O produto com surimi apresentou menor VET (193,7Kcal/100g) e conteúdo de sódio (520 mg/100g) que a salsicha comercial. Nas condições de estudo, no embutido emulsionado, não foi verificada ação antioxidante de hidrolisados, porém houve efeito sobre a CMS de anchoita.
Resumo:
Scottish sandstone buildings are now suffering the long-term effects of salt-crystallisation damage, owing in part to the repeated deposition of de-icing salts during winter months. The use of de-icing salts is necessary in order to maintain safe road and pavement conditions during cold weather, but their use comes at a price. Sodium chloride (NaCl), which is used as the primary de-icing salt throughout the country, is a salt known to be damaging to sandstone masonry. However, there remains a range of alternative, commercially available de-icing salts. It is unknown however, what effect these salts have on porous building materials, such as sandstone. In order to protect our built heritage against salt-induced decay, it is vital to understand the effects of these different salts on the range of sandstone types that we see within the historic buildings of Scotland. Eleven common types of sandstone were characterised using a suite of methods in order to understand their mineralogy, pore structure and their response to moisture movement, which are vital properties that govern a stone’s response to weathering and decay. Sandstones were then placed through a range of durability tests designed to measure their resistance to various weathering processes. Three salt crystallisation tests were undertaken on the sandstones over a range of 16 to 50 cycles, which tested their durability to NaCl, CaCl2, MgCl2 and a chloride blend salt. Samples were primarily analysed by measuring their dry weight loss after each cycle, visually after each cycle and by other complimentary methods in order to understand their changing response to moisture uptake after salt treatment. Salt crystallisation was identified as the primary mechanism of decay across each salt, with the extent of damage in each sandstone influenced by environmental conditions and pore-grain properties of the stone. Damage recorded in salt crystallisation tests was ultimately caused by the generation of high crystallisation pressures within the confined pore networks of each stone. Stone and test-specific parameters controlled the location and magnitude of damage, with the amount of micro-pores, their spatial distribution, the water absorption coefficient and the drying efficiency of each stone being identified as the most important stone-specific properties influencing salt-induced decay. Strong correlations were found between the dry weight loss of NaCl treated samples and the proportion of pores <1µm in diameter. Crystallisation pressures are known to scale inversely with pore size, while the spatial distribution of these micro-pores is thought to influence the rate, overall extent and type of decay within the stone by concentrating crystallisation pressures in specific regions of the stone. The water absorption determines the total amount of moisture entering into the stone, which represents the total amount of void space for salt crystallisation. The drying parameters on the other hand, ultimately control the distribution of salt crystallisation. Those stones that were characterised by a combination of a high proportion of micro-pores, high water absorption values and slow drying kinetics were shown to be most vulnerable to NaCl-induced decay. CaCl2 and MgCl2 are shown to have similar crystallisation behaviour, forming thin crystalline sheets under low relative humidity and/or high temperature conditions. Distinct differences in their behaviour that are influenced by test specific criteria were identified. The location of MgCl2 crystallisation close to the stone surface, as influenced by prolonged drying under moderate temperature drying conditions, was identified as the main factor that caused substantial dry weight loss in specific stone types. CaCl2 solutions remained unaffected under these conditions and only crystallised under high temperatures. Homogeneous crystallisation of CaCl2 throughout the stone produced greater internal change, with little dry weight loss recorded. NaCl formed distinctive isometric hopper crystals that caused damage through the non-equilibrium growth of salts in trapped regions of the stone. Damage was sustained as granular decay and contour scaling across most stone types. The pore network and hydric properties of the stones continually evolve in response to salt crystallisation, creating a dynamic system whereby the initial, known properties of clean quarried stone will not continually govern the processes of salt crystallisation, nor indeed can they continually predict the behaviour of stone to salt-induced decay.
Physicochemical study of synthetic dyes adsorption on TiO2 thin films for dye sensitized solar cells