990 resultados para Chimeric Gene-product
Resumo:
Data were retrospectively collected from 69 Brazilian patients (45 boys) with growth hormone deficiency (GHD) who received exogenous growth hormone (GH) for a median duration of 4 years (range 1-13 years). Forty-two patients had multiple pituitary hormone deficiencies and 27 had isolated GHD. Peak GH was <7 ng/ml (IRMA) or <3.2 ng/ml (IFMA) after two stimulation tests.. Therapy was started at median age of 10.0 years (range 2.2-21.6 years), bone age of 5.8 years (0.5-13.5 years) and height standard deviation score -4.4 (range -9.3 to -1.6). MRI revealed pituitary abnormalities in 87% of patients. Homozygous mutations in PROP-1, GHRH-R, GH-1 or HESX-1 genes were found in 12 patients. Mean height velocities were 3.3 pretreatment and 10.3, 7.8, 7.4 and 6.4 cm/yr, respectively, during 1-4 years of treatment with GH. In conclusion, the high prevalence (96%) of genetic and/or pituitary abnormalities probably reflects the stringent diagnostic criteria used, and GH replacement resulted in significant catch-up growth.
Resumo:
BACKGROUND - Multibacillary (MB) leprosy may be manifested with antiphospholipid antibodies (aPL), among which anti-beta(2)GP1 (beta(2)-glycoprotein 1). High titers of aPL are associated with APS (Antiphospholipid Syndrome), characterized by thrombosis. The mutation Val247Leu in the domain V of beta(2)GP1 exposes hidden epitopes with consequent development of anti-beta(2)GP1 antibodies. OBJECTIVE: To evaluate the Val247Leu polymorphism of beta(2)GP1 gene and its correlation with anti-beta(2)GP1 antibodies in leprosy patients. METHODS: The Val247Leu polymorphism was performed by PCR-RFLP and anti-beta(2)GP1 antibodies were measured by ELISA. RESULTS: The genotypic Val/Val was more prevalent in the leprosy group, compared to controls. Regarding the 7 MB patients with APS, four presented heterozygosis and three, Val/Val homozygosis. Although higher titrations of anti-beta(2)GP1 IgM antibodies were seen in MB leprosy group with Val/Leu and Val/Val genotypes, there was no statistical difference when compared to Leu/Leu genotype. CONCLUSION: The prevalence of Val/Val homozygosis in leprosy group can partially justify the presence of anti-beta(2)GP1 IgM antibodies in MB leprosy. The description of heterozygosis and Val/Val homozygosis in 7 patients with MB leprosy and thrombosis corroborates the implication of anomalous phenotype expression of beta(2)GP1 and development of anti-beta(2)GP1 antibodies, with consequent thrombosis and APS.
Resumo:
Objectives To evaluate the gene expression profile of fibroblasts from affected and non-affected skin of systemic sclerosis (SSc) patients and from controls. Materials and methods Labeled cDNA from fibroblast cultures from forearm (affected) and axillary (non-affected) skin from six diffuse SSc patients, from three normal controls, and from MOLT-4/HEp-2/normal fibroblasts (reference pool) was probed in microarrays generated with 4193 human cDNAs from the IMAGE Consortium. Microarray images were converted into numerical data and gene expression was calculated as the ratio between fibroblast cDNA (Cy5) and reference pool cDNA (Cy3) data and analyzed by R environment/Aroma, Cluster, Tree View, and SAM softwares. Differential expression was confirmed by real time PCR for a set of selected genes. Results Eighty-eight genes were up- and 241 genes down-regulated in SSc fibroblasts. Gene expression correlation was strong between affected and non-affected fibroblast samples from the same patient (r>0.8), moderate among fibroblasts from all patients (r=0.72) and among fibroblasts from all controls (r=0.70), and modest among fibroblasts from patients and controls (r=0.55). The differential expression was confirmed by real time PCR for all selected genes. Conclusions Fibroblasts from affected and non-affected skin of SSc patients shared a similar abnormal gene expression profile, suggesting that the widespread molecular disturbance in SSc fibroblasts is more sensitive than histological and clinical alterations. Novel molecular elements potentially involved in SSc pathogenesis were identified.
Resumo:
Epidermal growth factor (EGF) plays an important role in cancer. A functional single nucleotide polymorphism (SNP) in the 5`-untranslated region of the EGF gene (+61 A>G) may influence its expression and contribute to cancer predisposition and aggressiveness. Aiming to investigate the role of EGF +61 A>G in the susceptibility to glioma and its prognosis, we performed a case-control study with 165 patients and 200 healthy controls from Brazil. Comparisons of genotype distributions and allele frequencies did not reveal any significant differences between the groups. The mean overall survival was 9.2 months for A/A, 8.2 months for A/G, and 7.7 months for GIG. When survival curves were plotted we found that the +61G allele is associated with poor overall survival (p=0.023) but not with disease-free survival (p=0.527). Our data suggest that, although there is no association between the EGF +61 A>G genotype and glioma susceptibility, this SNP is associated with shorter overall survival of glioma patients in the Brazilian population. Nevertheless, future studies utilizing a larger series are essential for a definitive conclusion. (Int J Biol Markers 2009; 24: 277-81)
Resumo:
Gastric cancer is one of the most common malignancies. DNA methylation is implicated in DNA mismatch repair genes deficiency. In the present study, we evaluated the methylation status of MLH1, MSH2, MSH6 and PMS2 in 20 diffuse- and 26 intestinal-type gastric cancer samples and 20 normal gastric mucosal of gastric cancer patients from Northern Brazil. We found that none of the nonneoplastic samples showed methylation of any gene promoter and 50% of gastric, cancer samples showed at least one methylated gene promoter. Methylation frequencies of MLH1, MSH2, MSH6 and PMS2 promoter were 21.74%, 17.39%, 0% and 28.26% respectively in gastric cancer samples. MLH1 and PMS2 methylation were associated with neoplastic samples compared to nonneoplastic ones. PMS2:? methylation was associated with diffuse- and intestinal-type cancer compared with normal controls. Intestinal-type cancer showed significant association with MLH1 methylation. Diffuse-type cancer was significantly associated with MSH2 methylation. Our findings show differential gene methylation in tumoral tissue, which allows us to conclude that methylation is associated with gastric carcinogenesis. Methylation of mismatch repair genes was associated with gastric carcinogenesis and may be a helpful tool for diagnosis, prognosis and therapies. However, MSH6 does not seem to be regulated by methylation in our samples.
Resumo:
Neospora caninum is one of the main causes of abortion and natimortality in cattle. Host immune defense is capable to inhibit tachyzoite activity during acute infection, but there is no action against bradyzoites in tissue cysts. Activation and modulation of this response is controlled by cell mediators. The real-time RT-PCR technique was employed to detect some of those mediators during N. caninum infection. Holstein and Nelore calves intramuscularly infected with tachyzoites and uninfected controls were slaughtered at the sixth day post-infection and popliteal lymph node, liver and brain cortex samples were analyzed. Real-time RT-PCR detected gene expression in all tissues. No significant variation of GAPDH gene expression was detected among groups, its amplification efficiency was similar to the other genes tested and it was used as the endogenous control for the analysis. Comparisons between infected and uninfected groups allowed the relative gene expression quantification. IFN-gamma and TNF-alpha genes showed increased expression in some samples. iNOS and TGF-beta 1 genes had some non-significant variations and IL-4 and IL-10 stayed pratically inaltered.
Resumo:
Turkey coronavirus (TCoV) is a causative agent associated with poult enteritis and mortality syndrome (PEMS) in turkeys worldwide. The disease is an acute, highly contagious enteric disease that is characterized by depression, anorexia, diarrhea, and high mortality in commercial turkey flocks. The presence of TCoV in 12 intestinal-content samples, from turkey flocks aged between 10 and 104 days and exhibiting severe enteritis, was monitored during the period of 2004 to 2006. TCoV detection was accomplished by a reverse transcriptase-polymerase chain reaction (RT-PCR) through amplification of the 3` UTR region, followed by amplification of genes 3 and 5. Molecular characterization of the viruses was done through amplification of genes 3 and 5 and showed evidence of genetic similarity between them, although they differed from sequences of other TCoVs described in the literature. In relation to gene 3, samples showed a greater relationship with chicken infectious bronchitis virus (IBV), while gene 5 showed greater identity with pheasant coronavirus (PhCoV). Our results suggest that the strategy of amplification of the 3` UTR region, followed by sequencing of genes 3 and 5, has proven to be an effective means of detecting TCoV in intestinal contents.
Resumo:
Objective: The aim of this study was to investigate the prevalence of the Eosinophil cationic protein (ECP)-gene polymorphism 434(G > C) in oral squamous cell carcinoma (OSCC) patients and its association with tumor-associated tissue eosinophilia (TATE), demographic, clinical, and microscopic variables. Methods: The ECP genotypes of 165 healthy individuals and 157 OSCC patients were detected by PCR-RFLP analysis after cleavage of the amplified DNA sequence with enzyme PstI. TATE was obtained by morphometric analysis. Chi-square test or Fisher`s exact test was used to analyze the association of ECP-gene polymorphism 434(G > C) with TATE, demographic, clinical, and microscopic variables in OSCC patients. Disease-free survival and overall survival were calculated by the Kaplan-Meier product-limit actuarial method and the comparison of the survival curves were performed using log rank test. Results: Most of healthy individuals (53.33%) and OSCC patients (57.97%) were heterozygous for the ECP 434(G > C) polymorphism. Based on numerical differences, our results showed that OSCC patients with intense TATE and at least one C allele had a higher frequency of bilateral neck dissection, local recurrence, vascular embolization, involved resection margins, and postoperative radiotherapy. No statistically significant differences on survival rates were found in OSCC patients presenting different ECP 434(G > C) genotypes. Conclusions: These results suggest a tendency towards a poor clinical outcome in OSCC patients with intense TATE and 434GC/CC genotypes, probably due to an ECP genetic variant with altered cytotoxic activity.
Resumo:
Increasingly, cystic fibrosis (CF) is regarded as an inflammatory disorder where the response of the lung to Pseudomonas aeruginosa is exaggerated as a consequence of processes mediated by the product of the CF gene, CFTR. Of importance to any gene-replacement strategy for treatment of CF is the identification of the cell type(s) within the lung milieu that need to be corrected and an indication whether this is sufficient to restore a normal inflammatory response and bacterial clearance. We generated G551D CF mice transgenically expressing the human CFTR gene in two tissue compartments previously demonstrated to mediate a CFTR-dependent inflammatory response: lung epithelium and alveolar macrophages. Following chronic pulmonary infection with P. aeruginosa, CF mice with epithelial-expressed but not macrophage-specific CFTR showed an improvement in pathogen clearance and inflammatory markers compared with control CF animals. Additionally, these data indicate the general role for epithelial cell-mediated events in the response of the lung to bacterial pathogens and the importance of CFTR in mediating these processes.
Resumo:
Dissertação para obtenção do Grau de Mestre em Biotecnologia
Resumo:
The need for better gene transfer systems towards improved risk=benefit balance for patients remains a major challenge in the clinical translation of gene therapy (GT). We have investigated the improvement of integrating vectors safety in combining (i) new short synthetic genetic insulator elements (GIE) and (ii) directing genetic integration to heterochromatin. We have designed SIN-insulated retrovectors with two candidate GIEs and could identify a specific combination of insulator 2 repeats which translates into best functional activity, high titers and boundary effect in both gammaretro (p20) and lentivectors (DCaro4) (see Duros et al, abstract ibid). Since GIEs are believed to shield the transgenic cassette from inhibitory effects and silencing, DCaro4 has been further tested with chimeric HIV-1 derived integrases which comprise C-ter chromodomains targeting heterochromatin through either histone H3 (ML6chimera) or methylatedCpGislands (ML10). With DCaro4 only and both chimeras, a homogeneous expression is evidenced in over 20% of the cells which is sustained over time. With control lentivectors, less than 2% of cells express GFP as compared to background using a control double-mutant in both catalytic and ledgf binding-sites; in addition, a two-times increase of expression can be induced with histone deacetylase inhibitors. Our approach could significantly reduce integration into open chromatin sensitive sites in stem cells at the time of transduction, a feature which might significantly decrease subsequent genotoxicity, according to X-SCIDs patients data.Work performed with the support of EC-DG research within the FP6-Network of Excellence, CLINIGENE: LSHB-CT-2006-018933
Resumo:
The classic organization of a gene structure has followed the Jacob and Monod bacterial gene model proposed more than 50 years ago. Since then, empirical determinations of the complexity of the transcriptomes found in yeast to human has blurred the definition and physical boundaries of genes. Using multiple analysis approaches we have characterized individual gene boundaries mapping on human chromosomes 21 and 22. Analyses of the locations of the 5' and 3' transcriptional termini of 492 protein coding genes revealed that for 85% of these genes the boundaries extend beyond the current annotated termini, most often connecting with exons of transcripts from other well annotated genes. The biological and evolutionary importance of these chimeric transcripts is underscored by (1) the non-random interconnections of genes involved, (2) the greater phylogenetic depth of the genes involved in many chimeric interactions, (3) the coordination of the expression of connected genes and (4) the close in vivo and three dimensional proximity of the genomic regions being transcribed and contributing to parts of the chimeric RNAs. The non-random nature of the connection of the genes involved suggest that chimeric transcripts should not be studied in isolation, but together, as an RNA network.
Resumo:
The cdc10 gene of the fission yeast Schizosaccharomyces pombe is required for traverse of start and commitment to the mitotic cell division cycle rather than other fates. The product of the gene, p85cdc10, is a component of a factor that is thought to be involved in regulating the transcription of genes that are required for DNA synthesis. In order to define regions of the p85cdc10 protein that are important for its function a fine structure genetic map of the cdc10 gene was derived and the sequences of 13 cdc10ts mutants determined. The 13 mutants tested define eight alleles. Eleven of the mutants are located in the region that contains the two copies of the cdc10/SWI6 repeat motif, implicating it as important for p85cdc10 function.
Resumo:
Cancer-testis (CT) antigens comprise families of tumor-associated antigens that are immunogenic in patients with various cancers. Their restricted expression makes them attractive targets for immunotherapy. The aim of this study was to determine the expression of several CT genes and evaluate their prognostic value in head and neck squamous cell carcinoma (HNSCC). The pattern and level of expression of 12 CT genes (MAGE-A1, MAGE-A3, MAGE-A4, MAGE-A10, MAGE-C2, NY-ESO-1, LAGE-1, SSX-2, SSX-4, BAGE, GAGE-1/2, GAGE-3/4) and the tumor-associated antigen encoding genes PRAME, HERV-K-MEL, and NA-17A were evaluated by RT-PCR in a panel of 57 primary HNSCC. Over 80% of the tumors expressed at least 1 CT gene. Coexpression of three or more genes was detected in 59% of the patients. MAGE-A4 (60%), MAGE-A3 (51%), PRAME (49%) and HERV-K-MEL (42%) were the most frequently expressed genes. Overall, the pattern of expression of CT genes indicated a coordinate regulation; however there was no correlation between expression of MAGE-A3/A4 and BORIS, a gene whose product has been implicated in CT gene activation. The presence of MAGE-A and NY-ESO-1 proteins was verified by immunohistochemistry. Analysis of the correlation between mRNA expression of CT genes with clinico-pathological characteristics and clinical outcome revealed that patients with tumors positive for MAGE-A4 or multiple CT gene expression had a poorer overall survival. Furthermore, MAGE-A4 mRNA positivity was prognostic of poor outcome independent of clinical parameters. These findings indicate that expression of CT genes is associated with a more malignant phenotype and suggest their usefulness as prognostic markers in HNSCC.
Resumo:
In principle, we should be glad that Eric Kmiec and his colleagues published in Science's STKE (1) a detailed experimental protocol of their gene repair method (2, 3). However, a careful reading of their contribution raises more doubts about the method. The research published in Science five years ago by Kmiec and his colleagues was said to demonstrate that chimeric RNA-DNA oligonucleotides could correct the mutation responsible for sickle cell anemia with 50% efficiency (4). Such a remarkable result prompted many laboratories to attempt to replicate the research or utilize the method on their own systems. However, if the method worked at all, which it rarely did, the achieved efficiency was usually lower by several orders of magnitude. Now, in the Science's STKE protocol, we are given crucial information about the method and why it is so important to utilize these expensive chimeric RNA-DNA constructs. In the introduction we are told that the RNA-DNA duplex is more stable than a DNA-DNA duplex and so extends the half-life of the complexes formed between the targeted DNA and the chimeric RNA-DNA oligonucleotides. This logical explanation, however, conflicts with the statement in the section entitled "Transfection with Oligonucleotides and Plasmid DNA" that Kmiec and colleagues have recently demonstrated that classical single-stranded DNA oligonucleotides with a few protective phosphothioate linkages have a "gene repair conversion frequency rivaling that of the RNA/DNA chimera". Indeed, the research cited for that result actually states that single-stranded DNA oligonucleotides are in fact several-fold more efficient (3.7-fold) than the RNA-DNA chimeric constructs (5). If that is the case, it raises the question of why Kmiec and colleagues emphasize the importance of the RNA in their original chimeric constructs. Their own new results show that modified single-stranded DNA oligonucleotides are more effective than the expensive RNA-DNA hybrids. Moreover, the current efficiency of the gene repair by RNA-DNA hybrids, according to Kmiec and colleagues in their recent paper is only 4×10-4 even after several hours of pre-selection permitting multiplification of bacterial cells with the corrected plasmid (5). This efficiency is much lower than the 50% value reported five years ago, but is assuredly much closer to the reality.