999 resultados para Characterization Ceramics


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mineral barahonaite is in all probability a member of the smolianinovite group. The mineral is an arsenate mineral formed as a secondary mineral in the oxidized zone of sulphide deposits. We have studied the barahonaite mineral using a combination of Raman and infrared spectroscopy. The mineral is characterized by a series of Raman bands at 863 cm−1 with low wavenumber shoulders at 802 and 828 cm−1. These bands are assigned to the arsenate and hydrogen arsenate stretching vibrations. The infrared spectrum shows a broad spectral profile. Two Raman bands at 506 and 529 cm−1 are assigned to the triply degenerate arsenate bending vibration (F 2, ν4), and the Raman bands at 325, 360, and 399 cm−1 are attributed to the arsenate ν2 bending vibration. Raman and infrared bands in the 2500–3800 cm−1 spectral range are assigned to water and hydroxyl stretching vibrations. The application of Raman spectroscopy to study the structure of barahonaite is better than infrared spectroscopy, probably because of the much higher spatial resolution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A fractal method was introduced to quantitatively characterize the dispersibility of modified kaolinite (MK) and precipitated silica (PS) in styrene–butadiene rubber (SBR) matrix based on the lower magnification transmission electron microscopic images. The fractal dimension (FD) is greater, and the dispersion is worse. The fractal results showed that the dispersibility of MK in the latex blending sample is better than that in the mill blending samples. With the increase of kaolinite content, the FD increases from 1.713 to 1.800, and the dispersibility of kaolinite gradually decreases. There is a negative correlation between the dispersibility and loading content. With the decrease of MK and increase of PS, the FD significantly decreases from 1.735 to 1.496 and the dipersibility of kaolinite remarkably increases. The hybridization can improve the dispersibility of fillers in polymer matrix. The FD can be used to quantitatively characterize the aggregation and dispersion of kaolinite sheets in rubber matrix.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structural characteristics of the raw coal (AY), the H2O2 oxidized coals (AY–H2O2) and the HF acidized AY–H2O2 (AY–H2O2–HF) were investigated by SEM, X-ray diffraction, Raman and FTIR spectroscopy. The results indicate that the derivative coals show an obvious increase in the aromaticity, crystalline carbon content and hydroxyl content, especially the AY–H2O2–HF. The stacking layer number of crystalline carbon decreases and the aspect ratio (La/Lc) remarkably increases for AY–H2O2 and AY–H2O2–HF. The crystalline layers become much thinner. The particle size of AY–H2O2–HF in width significantly decreases from 1 μm to less than 100 nm. The combination of H2O2 oxidization and HF acidification is effective to reduce the size of the aromatic layers and to increase the reactivity of derivative coals. The process can help us obtain the superfine crystalline carbon materials like graphite structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structural characteristics of raw coal and hydrogen peroxide (H2O2)-oxidized coals were investigated using scanning electron microscopy, X-ray diffraction (XRD), Raman spectra, and Fourier transform infrared (FT-IR) spectroscopy. The results indicate that the derivative coals oxidized by H2O2 are improved noticeably in aromaticity and show an increase first and then a decrease up to the highest aromaticity at 24 h. The stacking layer number of crystalline carbon decreases and the aspect ratio (width versus stacking height) increases with an increase in oxidation time. The content of crystalline carbon shows the same change tendency as the aromaticity measured by XRD. The hydroxyl bands of oxidized coals become much stronger due to an increase in soluble fatty acids and alcohols as a result of the oxidation of the aromatic and aliphatic C‐H bonds. In addition, the derivative coals display a decrease first and then an increase in the intensity of aliphatic C‐H bond and present a diametrically opposite tendency in the aromatic C‐H bonds with an increase in oxidation time. There is good agreement with the changes of aromaticity and crystalline carbon content as measured by XRD and Raman spectra. The particle size of oxidized coals (<200 nm in width) shows a significant decrease compared with that of raw coal (1 μm). This study reveals that the optimal oxidation time is ∼24 h for improving the aromaticity and crystalline carbon content of H2O2-oxidized coals. This process can help us obtain superfine crystalline carbon materials similar to graphite in structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have studied the mineral Ca(H4B3O7)(OH)⋅4(H2O) or CaB3O3(OH)5⋅4(H2O) using electron microscopy and vibrational spectroscopy. The mineral has been characterized by a range of techniques including X-ray diffraction, thermal analysis, electron microscopy with EDX and vibrational spectroscopy. Electron microscopy shows a pure phase and the chemical analysis shows the presence of calcium only. The nominal resolution of the Raman spectrometer is of the order of 2 cm−1 and as such is sufficient enough to identify separate bands for the stretching bands of the two boron isotopes. Raman and infrared bands are assigned to the stretching and bending modes of trigonal and tetrahedral boron and the stretching modes of the hydroxyl and water units. By using a combination of techniques we have characterized the borate mineral inyoite.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mineral yuksporite (K,Ba)NaCa2(Si,Ti)4O11(F,OH)⋅H2O has been studied using the combination of SEM with EDX and vibrational spectroscopic techniques of Raman and infrared spectroscopy. Scanning electron microscopy shows a single pure phase with cleavage fragment up to 1.0 mm. Chemical analysis gave Si, Al, K, Na and Ti as the as major elements with small amounts of Mn, Ca, Fe and REE. Raman bands are observed at 808, 871, 930, 954, 980 and 1087 cm−1 and are typical bands for a natural zeolite. Intense Raman bands are observed at 514, 643 and 668 cm−1. A very sharp band is observed at 3668 cm−1 and is attributed to the OH stretching vibration of OH units associated with Si and Ti. Raman bands resolved at 3298, 3460, 3562 and 3628 cm−1 are assigned to water stretching vibrations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tooeleite is an unique ferric arsenite sulfate mineral, which has the potential significance of directly fixing As(III) as mineral trap. The tooeleite and various precipitates were hydrothermally synthesized under the different of initial As(III)/As(V) molar ratios and characterized by XRD, FTIR, XPS and SEM. The crystallinity of tooeleite decreases with the amount of As(V). The precipitate is free of any crystalline tooeleite at the level of that XRD could detect when the ratio of As(III)/As(V) of 7:3 and more. The characteristic bands of tooeleite are observed in 772, 340, 696 and 304 cm−1, which are assigned to the ν1, ν2, ν3 and ν4 vibrations of AsO33−. These intensities of bands gradually decreases with the presence of As(V) and its increasing. An obviously wide band is observed in 830 cm−1, which is the ν1 vibration of AsO4. The result of XPS reveals that the binding energies of As3d increase from 44.0 eV to 45.5 eV, which indicates that the amount of As(V) in the precipitates increases. The concentrations of arsenic released of these precipitates are 350–650 mg/L. The stability of tooeleite decreases by comparison when the presence of coexisting As(V) ions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Achieving the combination of delayed and immediate release of a vaccine from a delivery device without applying external triggers remains elusive in implementing single administration vaccination strategies. Here a means of vaccine delivery is presented, which exploits osmosis to trigger delayed burst release of an active compound. Poly(-caprolactone) capsules of 2 mm diameter were prepared by dip-coating, and their burst pressure and release characteristics were evaluated. Burst pressures (in bar) increased with wall thickness (t in mm) following Pburst = 131.t + 3.4 (R2 = 0.93). Upon immersion in PBS, glucose solution-filled capsules burst after 8.7 ± 2.9 days. Copolymers of hydrophobic  -caprolactone and hydrophilic polyethylene glycol were synthesized and their physico-chemical properties were assessed. With increasing hydrophilic content, the copolymer capsules showed increased water uptake rates and maximum weight increase, while the burst release was earlier: 5.6 ± 2.0 days and 1.9 ± 0.2 days for 5 and 10 wt% polyethylene glycol, respectively. The presented approach enables the reproducible preparation of capsules with high versatility in materials and properties, while these vaccine delivery vehicles can be prepared separately from, and independently of the active compound.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The minerals clinotyrolite and fuxiaotuite are discredited in terms of the mineral tangdanite. The mixed anion mineral tangdanite Ca2Cu9(AsO4)4(SO4)0.5(OH)9 9H2O has been studied using a combination of Raman and infrared spectroscopy. Characteristic bands associated with arsenate, sulphate and hydroxyl units are identified. Broad bands in the OH stretching region are observed and are resolved into component bands. These bands are assigned to water and hydroxyl stretching vibrations. Two intense Raman bands at 837 and approximately 734 cm−1 are assigned to the ν1 (AsO4)3− symmetric stretching and ν3 (AsO4)3− antisymmetric stretching modes. Infrared bands at 1023 cm−1 are assigned to the (SO4)2− ν1 symmetric stretching mode, and infrared bands at 1052, 1110 and 1132 cm−1 assigned to (SO4)2− ν3 antisymmetric stretching modes, confirming the presence of the sulphate anion in the tangdanite structure. Raman bands at 593 and 628 cm−1 are attributed to the (SO4)2− ν4 bending modes. Low-intensity Raman bands found at 457 and 472 cm−1 are assigned to the (AsO4)3− ν2 bending modes. A comparison is made with the previously obtained spectral data on the discredited mineral clinotyrolite.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mineral aerinite is an interesting mineral because it contains both silicate and carbonate units which is unusual. It is also a highly colored mineral being bright blue/purple. We have studied aerinite using a combination of techniques which included scanning electron microscopy, energy dispersive X-ray analysis, Raman and infrared spectroscopy. Raman bands at 1049 and 1072 cm−1 are assigned to the carbonate symmetric stretching mode. This observation supports the concept of the non-equivalence of the carbonate units in the structure of aerinite. Multiple infrared bands at 1354, 1390 and 1450 cm−1 supports this concept. Raman bands at 933 and 974 cm−1 are assigned to silicon–oxygen stretching vibrations. Multiple hydroxyl stretching and bending vibrations show that water is in different molecular environments in the aerinite structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mineral lamprophyllite is fundamentally a silicate based upon tetrahedral siloxane units with extensive substitution in the formula. Lamprophyllite is a complex group of sorosilicates with general chemical formula given as A2B4C2Si2O7(X)4, where the site A can be occupied by strontium, barium, sodium, and potassium; the B site is occupied by sodium, titanium, iron, manganese, magnesium, and calcium. The site C is mainly occupied by titanium or ferric iron and X includes the anions fluoride, hydroxyl, and oxide. Chemical composition shows a homogeneous phase, composed of Si, Na, Ti, and Fe. This complexity of formula is reflected in the complexity of both the Raman and infrared spectra. The Raman spectrum is characterized by intense bands at 918 and 940 cm−1. Other intense Raman bands are found at 576, 671, and 707 cm−1. These bands are assigned to the stretching and bending modes of the tetrahedral siloxane units.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Graphene has emerged as one of the most exciting materials of the 21st century due to its unique properties which have demonstrated great potential for applications in energy storage, flexible electronics and multifunctional composites. This thesis has established a new technique for investigating the structure-property relationship of graphene-polymer nanocomposites at micro and nanoscales. The outcomes can help gain a fundamental understanding of the toughening mechanism in these novel nanocomposites and benefit the development of broad graphene based materials and devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Redclaw crayfish, Cherax quadricarinatus, possess a number of biological and commercial attributes that make them ideal for commercial aquaculture. While some studies have investigated digestive enzyme activity and nutritional requirements of this species, little information exists about the expression of digestive enzyme genes and their role in regulating digestive capacity. The current study therefore sequenced and annotated a RNASeq library constructed from a redclaw hepatopancreas to identify genes involved in digestive enzyme production. We observed that most of the transcripts that were annotated as digestive enzyme genes are associated with carbohydrate metabolism, thus confirming that redclaw have an innate capacity to digest a range of carbohydrate substrates. While endoglucanases were the most abundant group of digestive enzymes found, a number of novel transcripts were also detected. Here, we provide the first report for the presence and expression of endo-b-mannanase in freshwater crayfish. This novel gene showed significant alignment with a GH5 family protein from marine Limnoriids, wood borers that do not possess symbiotic microbes in their gut system. Overall, the data generated here provide an important resource to better understand the suite of digestive enzymes in redclaw that are very useful to fully utilize the species’ digestive capacity and will assist development of specific artificial feeds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Modelling fluvial processes is an effective way to reproduce basin evolution and to recreate riverbed morphology. However, due to the complexity of alluvial environments, deterministic modelling of fluvial processes is often impossible. To address the related uncertainties, we derive a stochastic fluvial process model on the basis of the convective Exner equation that uses the statistics (mean and variance) of river velocity as input parameters. These statistics allow for quantifying the uncertainty in riverbed topography, river discharge and position of the river channel. In order to couple the velocity statistics and the fluvial process model, the perturbation method is employed with a non-stationary spectral approach to develop the Exner equation as two separate equations: the first one is the mean equation, which yields the mean sediment thickness, and the second one is the perturbation equation, which yields the variance of sediment thickness. The resulting solutions offer an effective tool to characterize alluvial aquifers resulting from fluvial processes, which allows incorporating the stochasticity of the paleoflow velocity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We characterized nine new microsatellite markers isolated from (GT) n and (CT) n microsatellite- enriched genomic libraries of the sea squirt ( Halocynthia roretzi ). All markers were polymorphic in 92 individuals from a single natural population with 2–21 (mean 9.22) alleles per locus. The observed and expected heterozy-gosity of these markers were 0.086–0.886 and 0.102–0.870, respectively.One marker (Hr2004) significantly deviated from Hardy–Weinberg equilibrium. These new microsat-ellite markers should be useful for assessing the genetic diversity and population structure in H. roretzi.