965 resultados para Characteristic temperatures


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of internal standardization for simultaneous atomic absorption spectrometry (SIMAAS) was investigated for Cd and Pb determination in whole blood. The comparison of thermochemical and physicochemical parameters allowed the selection of Ag, Bi, and Tl as internal standard candidates. Correlation graphs, plotted from the normalized absorbance signals (n = 20) of internal standard (axis y) versus analyte ( axis x), precision and accuracy were used to select Ag as the most appropriate internal standard. Blood samples were diluted (1 + 9) with 0.11% (m/v) Triton X-100 + 1.1% (v/v) HNO3 + 0.28% (m/v) NH4H2PO4 + 10 mug L-1 Ag+. Pyrolysis and atomization temperatures for the optimized heating program were 550 and 1700 degreesC, respectively. Characteristic masses based on integrated absorbance were 1.68 +/- 0.01 pg for Cd and 30.3 +/- 0.1 pg for Pb. The detection limits (DL) were 0.095 +/- 0.001 mug L-1 and 0.86 +/- 0.01 mug L-1 for Cd and Pb, respectively. The mean RSD for all determinations was the same for Cd (13 +/- 9%) with or without Ag as internal standard ( IS). on the other hand, the use of Ag as IS improved the RSD for Pb from 3.6 +/- 4.0% to 2.2 +/- 2.0%. An effective contribution of the internal standard Ag was verified in the recoveries of spiked samples (0.5 mug L-1 Cd2+ and 5.0 mug L-1 Pb2+). The mean recoveries were 81 +/- 8% and 91 +/- 4% for Cd, and 80 +/- 11% and 93 +/- 6% for Pb without and with IS correction, respectively. This is the first application of IS for a simultaneous determination by SIMAAS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ion implantation of nitrogen into samples of tempered and quenched H13 steel was carried out by plasma immersion technique. A glow discharge plasma of nitrogen species was the ion source and the negative high voltage pulser provided 10-12 kV, 60 mu s duration and 1.0-2.0 kHz frequency, flat voltage pulses. The temperatures of the samples remained between 300 and 450 degrees C, sustained solely by the ion bombardment. In some of the discharges, we used a N-2 + H-2 gas mixture with 1:1 ratio. PIII treatments as long as 3, 6, 9 and up to 12 h were carried out to achieve as thickest treated layer as possible, and we were able to reach over 20 mu m treated layers, as a result of ion implantation and thermal (and possibly radiation enhanced) diffusion. The nitrogen depth profiles were obtained by GDOS (Glow Discharge Optical Spectroscopy) and the exact composition profiles by AES (Auger Electron Spectroscopy). The hardness of the treated surface was increased by more than 250%, reaching 18.8 GPa. No white layer was seen in this case. A hardness profile was obtained which corroborated a deep hardened layer, confirming the high efficacy of the moderate temperature PIII treatment of steels. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

SnO2 thin films were obtained by the sol-gel method starting from inorganic precursor solutions. In this work, we compare the structure of undoped and Sb-doped SnO2 films prepared by dip-coating. The films were deposited on quartz substrates and then fired at different temperatures ranging from 383 up to 1173 K. The density and the thickness of the films were determined by X-ray reflectivity (XRR) and their porous nanostructure was characterized by grazing-incidence small angle X-ray scattering (GISAXS). XRR results corresponding to undoped and Sb-doped samples indicate a monotonous decrease in film thickness when they are fired at increasing temperatures. At same time, the apparent density of undoped samples exhibits a progressive increase while for Sb-doped films it remains invariant up to 973 K and then increases for T = 1173 K. Anisotropic GISAXS patterns of both films, Sb-doped and undoped, fired above 573 K indicate the presence of elongated pores with their major axis perpendicular to the film surface. For all firing temperatures the nanopores in doped samples are larger than in undoped ones. This suggests that Sb-doping favours the pore growth hindering the film densification. At the highest firing temperature (1173 K) this effect is reversed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A method has been developed for the direct and simultaneous determination of As, Cu, Mn, Sb, and Se in drinking water by electrothermal atomic absorption spectrometry (ETAAS) using a transversely heated graphite tube atomizer (THGA) with longitudinal Zeeman-effect back- ground correction. The thermal behavior of analytes during the pyrolysis and atomization stages was investigated in 0.028 mol L-1 HNO3, 0.14 mol L-1 HNO3 and 1 + 1 (v/v) diluted water using mixtures of Pd(NO3)(2) + Mg(NO3)(2) as the chemical modifier, With 5 mug Pd + 3 mug Mg as the modifier, the pyrolysis and atomization temperatures of the heating program of the atomizer were fixed at 1400degreesC and 2100degreesC, respectively, and 20 muL of the water sample (sample + 0.28 mol L-1 HNO3, 1 + 1, v/v), dispensed into the graphite tube, analytical curves were established ranging from 5.00 - 50.0 mug L-1 for As, Sb, Se; 10.0 - 100 mug L-1 for Cu; and 20.0 - 200 mug L-1 for Mn. The characteristic masses were around 39 pg As, 17 pg Cu, 60 pg Mn, 43 pg Sb, and 45 pg Se, and the lifetime of the tube was around 500 firings. The limits of detection (LOD) based on integrated absorbance (0.7 mug L-1 As, 0.2 mug L-1 Cu, 0.6 mug L-1 Mn, 0.3 mug L-1 Sb, 0.9 mug L-1 Se) exceeded the requirements of the Brazilian Food Regulations (decree # 310-ANVS from the Health Department), which established the maximum permissible level for As, Cu, Mn, Sb, and Se at 50 mug L-1, 1000 mug L-1, 2000 mug L-1, 5 mug L-1, and 50 mug L-1, respectively. The relative standard deviations (n = 12) were typically < 5.3% for As, < 0.5% for Cu, < 2.1% for Mn, < 11.7% for Sb, and < 9.2% for Se. The recoveries of As, Cu, Mn, Sb, and Se added to the mineral water samples varied from 102-111%, 91-107%, 92-109%, 89-97%, and 101-109%, respectively. Accuracy for the determination of As, Cu, Mu Sb and Se was checked using standard reference materials NIST SRM 1640 - Trace Elements in Natural Water, NIST SRM 1643d - Trace Elements in Water, and 10 mineral water samples. A paired t-test showed that the results were in agreement with the certified values of the standard reference materials at the 95% confidence level.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A method has been developed for the simultaneous determination of Al, As, Cu, Fe, Mn, and Ni in fuel ethanol by graphite furnace atomic absorption spectrometry (GFAAS) using a transversely heated graphite atomizer (THGA) with longitudinal Zeeman-effect background correction. The thermal behavior of analytes during the pyrolysis and atomization stages using the mixture Pd(NO3)(2) + Mg(NO3)(2) as the chemical modifier was investigated in 0.028 mol L-1 HNO3, 0.14 mol L-1 HNO3, and diluted ethanol (1 + 1, v/v) containing different nitric acid concentrations. With 5 rhog Pd + 3 mug Mg as the modifiers, pyrolysis and atomization temperatures of the heating program of the atomizer were fixed at 1200 C and 2200degreesC respectively. For 20 muL of diluted sample (10 muL ethanol + 10 muL of 0.28 mol L-1 HNO3) dispensed into the graphite tube, analytical curves in the 2.0 - 50 mug L-1 Al, As, Cu, Fe, Mn, Ni ranges were established. The calculated characteristic masses were - 37 pg Al, 73 pg As, 31 pg Cu, 16 pg Fe, 9 pg Mn, and 44 pg Ni, and the lifetime of the tube was around 2 50 firings. The limits of detection (LOD) based on integrated absorbance were 1.2 mug L-1 Al, 2.5 mug L-1 As. 0.22 mug L-1 Cu, 1.6 L-1 Fe 0.20 mug L-1 Mn 1.1 mug L-1 Ni. The relatively standard deviations (n = 12) were less than or equal to 3%, less than or equal to 6%, less than or equal to 2%, less than or equal to 3.4%, less than or equal to 1.3%, and less than or equal to 2% for Al, As, Cu, Fe, Mn, and Ni, respectively, the recoveries of Al, As, Cu, Fe, Mn and Ni added to fuel ethanol samples varied from 77% to 112%, 92% to 114%, 104% to 113%, 73% to 116%, 91% to 122% and 93% to 116%, respectively. Accuracy was checked for Al, As, Cu, Fe, Mn, and Ni determination in 20 samples purchased at local gas stations in Araraquara city, Brazil. A paired t-test showed that the results were in agreement at the 95% confidence level with those obtained by single-element GFAAS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conductivity behavior of the Bi12TiO20 single crystal was investigated by the electric modulus spectroscopy, which was carried out in the frequency range from 5 Hz to 13 MHz and at temperatures higher than 400 degrees C. The resistance curve exhibits a set of properties correlated to a negative temperature coefficient thermistor. In the temperature range investigated, the characteristic parameter (,8) of the thermistor is equal to 4834 degrees C. Temperature coefficients of the resistance (a) were derived being equal to -3.02 x 10(-2) degrees C-1 at 400 degrees C and equal to -9.86 x 10(-3) degrees C-1 at 700 degrees C. The nature of the electric relaxation phenomenon and magnitude dc conductivity are approached. (c) 2005 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thin films of BaBi2Ta2O9 (BBT) composition were prepared through the metal organic decomposition method. The crystallinity, phase formation, crystallite size and morphology of the thin films were measured as a function of the type of substrate, stoichiometry of solution and process variables such as thickness and temperature. The thin films were investigated by grazing incidence X-ray diffractometry and atomic force microscopy (AFM) techniques. For the sample without excess of bismuth, diffraction peaks other than that of the BBT phase were observed. A well crystallized BBT single phase was observed for films prepared from a solution with 10% excess of bismuth, deposited on Si/Pt substrate, with a thickness up to 150 nm and sintered at temperatures of 700 degreesC. The thin BBT phase films heat-treated at 600 degreesC presented a diffraction pattern characteristic of samples with lower degree of crystallinity whereas for the thin films heat-treated at 800 degreesC, we observed the presence of other phases than the BBT. For the thin film deposited on the Sin+ substrate, we observe that the peaks corresponding to the BBT phase are broader than that observed on the samples deposited on the Pt and Si/Pt substrates. No variation of average crystallite size was observed as the excess of Bi increased from 10 to 20%. AFM images for the samples showed that the increasing the amount of bismuth promotes grain growth. The average surface roughness measured was in the range of 16-22 nm showing that the bismuth amount had no or little effect on the roughness of films. (C) 2002 Elsevier B.V. B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Statement of problem. Titanium has physical and mechanical properties, which have led to its increased use in dental prostheses despite casting difficulties due to high melting point and formation of oxide layers which affect the metal-ceramic bond strength.Purpose. This in vitro study evaluated the shear bond strength of the interface of 2 dental porcelains and pure titanium injected into a mold at 3 different temperatures.Material and methods. Using commercially pure (cp) titanium bars (Titanium, Grade I) melted at 1668degreesC and cast at mold temperatures of 430degreesC, 700degreesC or 900degreesC, 60 specimens were machined to 4 x 4 mm, with a base of 5 x 1 mm. The 4-mm surfaces were airborne-particle abraded with 100 mum aluminum oxide before applying and firing the bonding agent and evaluating the 2 porcelains (Triceram/Triline ti and Vita Titankeramik). Ten specimens were prepared for each temperature and porcelain combination Shear bond testing was performed in a universal testing machine, with a 500-kg load cell and crosshead speed of 0.5 mm/min. The specimens were loaded until failure. The interfaces of representative fractured specimens of each temperature were examined with a scanning electron microscope (SEM) and energy dispersive spectrometer (EDS). Data for shear bond strength (MPa) were statistically analyzed by 2-way ANOVA and the Tukey test (alpha = .05).Results. The results showed significant differences for the metal/porcelain interaction effect (P = .0464). There were no significant differences for the 2 porcelains (P = .4250). The Tukey test showed a significant difference between the pair cp Ti 430degreesC Triceram and cp Ti 900degreesC Triceram, with respective mean values and SDs of 59.74 +/- 11.62 and 34.03 +/- 10.35 MPa.Conclusion. Triceram porcelain showed a bond strength decrease with an increase in the mold temperature for casting titanium. The highest bond strength for Vita porcelain and the best metal-ceramic interface observed with the SEM were found with the mold temperature of 700degreesC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High critical temperature superconductors are evolving from a scientific research subject into large-scale application devices. In order to meet this development demand they must withstand high current capacity under mechanical loads arising from thermal contraction during cooling from room temperature down to operating temperature (usually 77 K) and due to the electromagnetic forces generated by the current and the induced magnetic field. Among the HTS materials, the Bi2Sr2Ca2Cu3Ox, compound imbedded in an Ag/AgMg sheath has shown the best results in terms of critical current at 77 K and tolerance against mechanical strain. Aiming to evaluate the influence of thermal stress induced by a number of thermal shock cycles we have evaluated the V-I characteristic curves of samples mounted onto semicircular holders with different curvature radius (9.75 to 44.5 mm). The most deformed sample (epsilon = 1.08%) showed the largest reduction of critical current (40%) compared to the undeformed sample and the highest sensitivity to thermal stress (I-c/I-c0 = 0.5). The V-I characteristic curves were also fitted by a potential curve displaying n-exponents varying from 20 down to 10 between the initial and last thermal shock cycle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Data on flow properties of Frozen Concentrated Orange Juice (FCOJ) produced from oranges cv. Pera-Rio (65.04 Brix, 8.8% w/w pulp content, 2.5% w/w pectin, 3.84% citric acid, 1.293 g cm(-3)) from -18 to 0 degrees C were fitted with appropriate predictive models. The power law model was found to be the most appropriate to fit the flow curves obtained for FCOJ between 46.56 and 65.04 degrees Brix. In higher concentrations, thixotropy was observed and showed more temperature dependence. A single equation combining Arrhenius and exponential relationships was applied to describe the temperature effect and shear rate on the quantity of breakdown of FCOJ.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Yttrium-aluminum oxides are interesting compounds and they have been extensively used as host for lasers and phosphors, due to their stable physical and chemical properties. The fabrication of yttrium-aluminum garnet (YAG) has been investigated thoroughly. Single-crystal YAG is expensive and to produce it a new way has been investigated. This process consists of modifying the methodology of reagents mixture and the process of heating them. The microwave irradiation is used to heat-treat the oxide mixture. The traditional synthesis of YAG powders occurs through the reaction of aluminum and yttrium powders at high temperatures. With this work we investigated the preparation of YAG by non-hydrolytic sol-gel route as an alternative methodology to obtain yttrium-aluminum matrix from inorganic precursors (yttrium and aluminum chloride). The preparation of the gel was carried out in an oven-dried glassware. The AlCl3, YCl3 and ethanol were reacted in reflux under argon atmosphere. Europium III chloride was added as a structural probe. The powder was dried and heat-treated in modified microwaves. The samples were pre-treated at 50 and 800 C during I h and then heated in microwaves for 30 s, 2 and 4 min. The formation process and structure of the powders were studied by means of X-ray diffraction (XRD), photoluminescence (PL) and transmission electronic microscopy (TEM). XRD presents only picks corresponding to the YAG phase and confirmed by TEM. PL date showed that the YAG phase was formed in 2 min with the samples pre-treated at 50 C. For the samples pretreated at 800 degrees C, the YAG phase appears in 30s. The excitation spectra present a maximum of 394 nm corresponding to the L-5(6) level and emission spectra of Eu III ion present bands characteristic transitions arising from the D-5(0) -> F-7(J) (J= 1, 2, 3, 4) monifolds excited at their maximum. The magnetic dipole D-5(0) -> F-7(1) transition presents more intensity than the electric dipole D-5(0) -> F-7(2) transition. This methodology showed efficiency in obtaining YAG phase. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work the La1.8Eu0.2O3 coating on nanometric alpha-alumina, alpha-Al2O3@La1.8Eu0.2O3, was prepared for the first time by a soft chemical method. The powder was heat-treated at 100, 400, 800 and 1200 degrees C for 2 h. X-ray powder diffraction patterns (XRD), transmission electronic microscopy (TEM), emission and excitation spectra, as well as Eu3+, lifetime were used to characterize the material and to follow the changes in structure as the heating temperature increases. The Eu3+ luminescence data revealed the characteristic transitions D-5(0) --> F-7(J) (J = 0, 1 and 3) of Eu3+ at around 580, 591 and 613 nm, respectively, when the powders were excited by 393 nm. The red color of the samples changed to yellow when the powder was annealed at 1200 degrees C. The decrease in the (D-5(0) --> F-7(2))/(D-5(0) --> F-7(1)) ratio from around 5.0 for samples heated at lower temperatures to 3.1 for samples annealed at 1200 degrees C is consistent with a higher symmetry of the Eu3+ at higher temperature. The excitation spectra of the samples also confirms this change by the presence of a more intense and broad band at around 317 nm, instead of the presence of the characteristic peak at 393 mn, which corresponds to the F-7(0) --> L-5(6) transition of the Eu3+. The lifetimes of the D-5(0) --> F-7(2) transition of Eu3+ for the samples heat-treated at 100, 400, 800 and 1200 degrees C was evaluated as 0.57, 0.72, 0.43 and 0.31 ms, respectively. (C) 2006 Elsevier Ltd. All fights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influence of the substrate temperature on the structural features and opto-electrical properties of undoped and indium-doped ZnO thin films deposited by pyrosol process was investigated. The addition of indium induces a drastic decrease (by a factor approximate to 10(10) for samples deposited at 300 degreesC) in the electrical resistivity of films, the lowest electrical resistivity (6 mOmega-cm) being observed for the film deposited at 450 degreesC. Films are highly transparent (>80%) in the Vis-NIR ranges, and the optical band gap exhibits a blue shift (from 3.29 to 3.33 eV) for the In-doped films deposited at increasing temperature. Preferential orientation of the ZnO crystallites with the c-axis perpendicular to the substrate surface and an anisotropic morphology of the nanoporous structure was observed for films growth at 300 and 350 degreesC. (C) 2002 Elsevier B.V. B.V. All rights reserved.