905 resultados para Cellular therapies
Resumo:
Plasticity in cancer stem-like cells (CSC) may provide a key basis for cancer heterogeneity and therapeutic response. In this study, we assessed the effect of combining a drug that abrogates CSC properties with standard-of-care therapy in a Ewing sarcoma family tumor (ESFT). Emergence of CSC in this setting has been shown to arise from a defect in TARBP2-dependent microRNA maturation, which can be corrected by exposure to the fluoroquinolone enoxacin. In the present work, primary ESFT from four patients containing CD133(+) CSC subpopulations ranging from 3% to 17% of total tumor cells were subjected to treatment with enoxacin, doxorubicin, or both drugs. Primary ESFT CSC and bulk tumor cells displayed divergent responses to standard-of-care chemotherapy and enoxacin. Doxorubicin, which targets the tumor bulk, displayed toxicity toward primary adherent ESFT cells in culture but not to CSC-enriched ESFT spheres. Conversely, enoxacin, which enhances miRNA maturation by stimulating TARBP2 function, induced apoptosis but only in ESFT spheres. In combination, the two drugs markedly depleted CSCs and strongly reduced primary ESFTs in xenograft assays. Our results identify a potentially attractive therapeutic strategy for ESFT that combines mechanism-based targeting of CSC using a low-toxicity antibiotic with a standard-of-care cytotoxic drug, offering immediate applications for clinical evaluation.
Resumo:
OBJECTIVE: To examine the incremental cost effectiveness of the five first line pharmacological smoking cessation therapies in the Seychelles and other developing countries. DESIGN: A Markov chain cohort simulation. SUBJECTS: Two simulated cohorts of smokers: (1) a reference cohort given physician counselling only; (2) a treatment cohort given counselling plus cessation therapy. INTERVENTION: Addition of each of the five pharmacological cessation therapies to physician provided smoking cessation counselling. MAIN OUTCOME MEASURES: Cost per life-year saved (LYS) associated with the five pharmacotherapies. Effectiveness expressed as odds ratios for quitting associated with pharmacotherapies. Costs based on the additional physician time required and retail prices of the medications. RESULTS: Based on prices for currently available generic medications on the global market, the incremental cost per LYS for a 45 year old in the Seychelles was 599 US dollars for gum and 227 dollars for bupropion. Assuming US treatment prices as a conservative estimate, the incremental cost per LYS was significantly higher, though still favourable in comparison to other common medical interventions: 3712 dollars for nicotine gum, 1982 dollars for nicotine patch, 4597 dollars for nicotine spray, 4291 dollars for nicotine inhaler, and 1324 dollars for bupropion. Cost per LYS increased significantly upon application of higher discount rates, which may be used to reflect relatively high opportunity costs for health expenditures in developing countries with highly constrained resources and high overall mortality. CONCLUSION: Pharmacological cessation therapy can be highly cost effective as compared to other common medical interventions in low mortality, middle income countries, particularly if medications can be procured at low prices.
Resumo:
In intestinal secretions, secretory IgA (SIgA) plays an important sentinel and protective role in the recognition and clearance of enteric pathogens. In addition to serving as a first line of defense, SIgA and SIgA x antigen immune complexes are selectively transported across Peyer's patches to underlying dendritic cells in the mucosa-associated lymphoid tissue, contributing to immune surveillance and immunomodulation. To explain the unexpected transport of immune complexes in face of the large excess of free SIgA in secretions, we postulated that SIgA experiences structural modifications upon antigen binding. To address this issue, we associated specific polymeric IgA and SIgA with antigens of various sizes and complexity (protein toxin, virus, bacterium). Compared with free antibody, we found modified sensitivity of the three antigens assayed after exposure to proteases from intestinal washes. Antigen binding further impacted on the immunoreactivity toward polyclonal antisera specific for the heavy and light chains of the antibody, as a function of the antigen size. These conformational changes promoted binding of the SIgA-based immune complex compared with the free antibody to cellular receptors (Fc alphaRI and polymeric immunoglobulin receptor) expressed on the surface of premyelocytic and epithelial cell lines. These data reveal that antigen recognition by SIgA triggers structural changes that confer to the antibody enhanced receptor binding properties. This identifies immune complexes as particular structural entities integrating the presence of bound antigens and adds to the known function of immune exclusion and mucus anchoring by SIgA.
Resumo:
A large variety of cancer vaccines have undergone extensive testing in early-phase clinical trials. A limited number have also been tested in randomized phase II clinical trials. Encouraging trends toward increased survival in the vaccine arms have been recently observed for 2 vaccine candidates in patients with non-small-cell lung cancer. These have provided the impetus for the initiation of phase III trials in large groups of patients with lung cancer. These vaccines target 2 antigens widely expressed in lung carcinomas: melanoma-associated antigen 3, a cancer testis antigen; and mucin 1, an antigen overexpressed in a largely deglycosylated form in advanced tumors. Therapeutic cancer vaccines aim at inducing strong CD8 and CD4 T-cell responses. The majority of vaccines recently tested in phase I clinical trials show efficacy in terms of induction of specific tumor antigen immunity. However, clinical efficacy remains to be determined but appears limited. Efforts are thus aimed at understanding the basis for this apparent lack of effect on tumors. Two major factors are involved. On one hand, current vaccines are suboptimal. Strong adjuvant agents and appropriate tumor antigens are needed. Moreover, dose, route, and schedule also need optimization. On the other hand, it is now clear that large tumors often present a tolerogenic microenvironment that hampers effective antitumor immunity. The partial understanding of the molecular pathways leading to functional inactivation of T cells at tumor sites has provided new targets for intervention. In this regard, blockade of cytotoxic T-lymphocyte antigen-4 and programmed death-1 with humanized monoclonal antibodies has reached the clinical testing stage. In the future, more potent cancer vaccines will benefit from intense research in antigen discovery and adjuvant agents. Furthermore, it is likely that vaccines need to be combined with compounds that reverse major tolerogenic pathways that are constitutively active at the tumor site. Developing these combined approaches to vaccination in cancer promises new, exciting findings and, at the same time, poses important challenges to academic research institutions and the pharmaceutical industry.
Resumo:
Background: The relevance of immune-endocrine interactions to the regulation of ovarian function in teleosts is virtually unexplored. As part of the innate immune response during infection, a number of cytokines such as tumor necrosis factor alpha (TNF alpha) and other immune factors, are produced and act on the reproductive system. However, TNF alpha is also an important physiological player in the ovulatory process in mammals. In the present study, we have examined for the first time the effects of TNF alpha in vitro in preovulatory ovarian follicles of a teleost fish, the brown trout (Salmo trutta). Methods: To determine the in vivo regulation of TNF alpha expression in the ovary, preovulatory brook trout (Salvelinus fontinalis) were injected intraperitoneally with either saline or bacterial lipopolysaccharide (LPS). In control and recombinant trout TNF alpha (rtTNF alpha)-treated brown trout granulosa cells, we examined the percentage of apoptosis by flow cytometry analysis and cell viability by propidium iodide (PI) staining. Furthermore, we determined the in vitro effects of rtTNF alpha on follicle contraction and testosterone production in preovulatory brown trout ovarian follicles. In addition, we analyzed the gene expression profiles of control and rtTNF alpha-treated ovarian tissue by microarray and real-time PCR (qPCR) analyses. Results: LPS administration in vivo causes a significant induction of the ovarian expression of TNF alpha. Treatment with rtTNF alpha induces granulosa cell apoptosis, decreases granulosa cell viability and stimulates the expression of genes known to be involved in the normal ovulatory process in trout. In addition, rtTNF alpha causes a significant increase in follicle contraction and testosterone production. Also, using a salmonid-specific microarray platform (SFA2.0 immunochip) we observed that rtTNF alpha induces the expression of genes known to be involved in inflammation, proteolysis and tissue remodeling. Furthermore, the expression of kallikrein, TOP-2, serine protease 23 and ADAM 22, genes that have been postulated to be involved in proteolytic and tissue remodeling processes during ovulation in trout, increases in follicles incubated in the presence of rtTNF alpha. Conclusions In view of these results, we propose that TNF alpha could have an important role in the biomechanics of follicle weakening, ovarian rupture and oocyte expulsion during ovulation in trout, primarily through its stimulation of follicular cell apoptosis and the expression of genes involved in follicle wall proteolysis and contraction.
Resumo:
Flow cytometry has become a valuable tool in cell biology. By analyzing large number of cells individually using light-scatter and fluorescence measurements, this technique reveals both cellular characteristics and the levels of cellular components. Flow cytometry has been developed to rapidly enumerate cells and to distinguish among different cell stages and structures using multiple staining. In addition to high-speed multiparametric data acquisition, analysis and cell sorting, which allow other characteristics of individual cells to be studied, have increased the interest of researchers in this technique. This chapter gives an overview of the principles of flow cytometry and examples of the application ofthe technique.
Resumo:
Understanding the extent of genomic transcription and its functional relevance is a central goal in genomics research. However, detailed genome-wide investigations of transcriptome complexity in major mammalian organs have been scarce. Here, using extensive RNA-seq data, we show that transcription of the genome is substantially more widespread in the testis than in other organs across representative mammals. Furthermore, we reveal that meiotic spermatocytes and especially postmeiotic round spermatids have remarkably diverse transcriptomes, which explains the high transcriptome complexity of the testis as a whole. The widespread transcriptional activity in spermatocytes and spermatids encompasses protein-coding and long noncoding RNA genes but also poorly conserves intergenic sequences, suggesting that it may not be of immediate functional relevance. Rather, our analyses of genome-wide epigenetic data suggest that this prevalent transcription, which most likely promoted the birth of new genes during evolution, is facilitated by an overall permissive chromatin in these germ cells that results from extensive chromatin remodeling.
Resumo:
Three pyrenyl-arene ruthenium complexes (M(1)-M(3)) of the general formula [Ru(η(6)-arene-pyrenyl)Cl(2)(pta)] (pta = 1,3,5-triaza-7-phosphaadamantane) have been synthesised and characterised. Prior to the coordination to ruthenium, pyrene was connected to the arene ligand via an alkane chain containing different functional groups: ester (L(1)), ether (L(2)) and amide (L(3)), respectively. Furthermore, the pyrenyl moieties of the M(n) complexes were encapsulated within the hydrophobic cavity of the water soluble metalla-cage, [Ru(6)(η(6)-p-cymene)(6)(tpt)(2)(donq)(3)](6+) (tpt = 2,4,6-tri-(pyridin-4-yl)-1,3,5-triazine; donq = 5,8-dioxydo-1,4-naphthoquinonato), while the arene ruthenium end was pointing out of the cage, thus giving rise to the corresponding host-guest systems [M(n)⊂Ru(6)(η(6)-p-cymene)(6)(tpt)(2)(donq)(3)](6+) ([M(n)⊂cage](6+)). The antitumor activity of the pyrenyl-arene ruthenium complexes (M(n)) and the corresponding host-guest systems [M(n)⊂cage][CF(3)SO(3)](6) were evaluated in vitro in different types of human cancer cell lines (A549, A2780, A2780cisR, Me300 and HeLa). Complex M(2), which contains an ether group within the alkane chain, demonstrated at least a 10 times higher cytotoxicity than the reference compound [Ru(η(6)-p-cymene)Cl(2)(pta)] (RAPTA-C). All host-guest systems [M(n)⊂cage](6+) showed good anticancer activity with IC(50) values ranging from 2 to 8 μM after 72 h exposure. The fluorescence of the pyrenyl moiety allowed the monitoring of the cellular uptake and revealed an increase of uptake by a factor two of the M(2) complex when encapsulated in the metalla-cage [Ru(6)(η(6)-p-cymene)(6)(tpt)(2)(donq)(3)](6+).
Resumo:
Observations gained from model organisms are essential, yet it remains unclear to which degree they are applicable to distant relatives. For example, in the dicotyledon Arabidopsis thaliana (Arabidopsis), auxin biosynthesis via indole-3-pyruvic acid (IPA) is essential for root development and requires redundant TRYPTOPHAN AMINOTRANSFERASE OF ARABIDOPSIS 1 (TAA1) and TAA1-RELATED (TAR) genes. A promoter T-DNA insertion in the monocotyledon Brachypodium distachyon (Brachypodium) TAR2-LIKE gene (BdTAR2L) severely down-regulates expression, suggesting reduced tryptophan aminotransferase activity in this mutant, which thus represents a hypomorphic Bdtar2l allele (Bdtar2l(hypo) ). Counterintuitive however, Bdtar2l(hypo) mutants display dramatically elongated seminal roots because of enhanced cell elongation. This phenotype is also observed in another, stronger Bdtar2l allele and can be mimicked by treating wild type with L-kynerunine, a specific TAA1/TAR inhibitor. Surprisingly, L-kynerunine-treated as well as Bdtar2l roots display elevated rather than reduced auxin levels. This does not appear to result from compensation by alternative auxin biosynthesis pathways. Rather, expression of YUCCA genes, which are rate-limiting for conversion of IPA to auxin, is increased in Bdtar2l mutants. Consistent with suppression of Bdtar2l(hypo) root phenotypes upon application of the ethylene precursor 1-aminocyclopropane-1-carboxylic-acid (ACC), BdYUCCA genes are down-regulated upon ACC treatment. Moreover, they are up-regulated in a downstream ethylene-signaling component homolog mutant, Bd ethylene insensitive 2-like 1, which also displays a Bdtar2l root phenotype. In summary, Bdtar2l phenotypes contrast with gradually reduced root growth and auxin levels described for Arabidopsis taa1/tar mutants. This could be explained if in Brachypodium, ethylene inhibits the rate-limiting step of auxin biosynthesis in an IPA-dependent manner to confer auxin levels that are sub-optimal for root cell elongation, as suggested by our observations. Thus, our results reveal a delicate homeostasis of local auxin and ethylene activity to control cell elongation in Brachypodium roots and suggest alternative wiring of auxin-ethylene crosstalk as compared to Arabidopsis.
Resumo:
The HeCo mouse model is characterized by a subcortical heterotopia formed by misplaced neurons normally migrating into the superficial cortical layers. The mutant mouse has a tendency to epileptic seizures. In my thesis project we discovered the mutated Eml1 gene, a member of the echinoderm microtubule-associated protein (EMAP) family, in HeCo as well as in a family of three children showing complex malformation of cortical development. This discovery formed an important step in exploring the pathogenic mechanisms underlying the HeCo phenotype. In vitro results showed that during cell division the EML1 protein is associated with the midbody and a mutated version of Eml1 highlighted an important role of the protein in the astral MT array during cell cycle. In vivo, we found that already at an early age of cortical development (E13), ectopic progenitors such as RGs (PAX6) and IPCs (TBR2) accumulate in the IZ along the entire neocortex. We demonstrated that in the VZ of the HeCo mouse, spindle orientation and cell cycle exit are perturbed. In later stages (E17), RG fibers are strongly disorganized with deep layer (TBR1) and upper layer (CUX1) neurons trapped within an ectopic mass. At P3, columns of upper layer neurons were present between the heterotopia and the developing cortex; these columns were also present at P7 but at lesser extent. Time lapse video recording (E15.5) revealed that the parameters characterizing the migration of individual neurons are not disturbed in HeCo; however, this analysis showed that the density of migrating neuron was smaller in HeCo. In conclusion, truncated EML1 is likely to play a prominent role during cell cycle but also acts on the cytoskeletal architecture altering the shape of RG fibers thus influencing the pattern of neuronal migration. The signal transduction between external cues and intracellular effector pathways through MTs may be secondary but sustains the heterotopia development and further studies are needed to clarify the impact of EML1 in progenitors versus post-mitotic cells.
Resumo:
Dans cette thèse, nous étudions les aspects comportementaux d'agents qui interagissent dans des systèmes de files d'attente à l'aide de modèles de simulation et de méthodologies expérimentales. Chaque période les clients doivent choisir un prestataire de servivce. L'objectif est d'analyser l'impact des décisions des clients et des prestataires sur la formation des files d'attente. Dans un premier cas nous considérons des clients ayant un certain degré d'aversion au risque. Sur la base de leur perception de l'attente moyenne et de la variabilité de cette attente, ils forment une estimation de la limite supérieure de l'attente chez chacun des prestataires. Chaque période, ils choisissent le prestataire pour lequel cette estimation est la plus basse. Nos résultats indiquent qu'il n'y a pas de relation monotone entre le degré d'aversion au risque et la performance globale. En effet, une population de clients ayant un degré d'aversion au risque intermédiaire encoure généralement une attente moyenne plus élevée qu'une population d'agents indifférents au risque ou très averses au risque. Ensuite, nous incorporons les décisions des prestataires en leur permettant d'ajuster leur capacité de service sur la base de leur perception de la fréquence moyenne d'arrivées. Les résultats montrent que le comportement des clients et les décisions des prestataires présentent une forte "dépendance au sentier". En outre, nous montrons que les décisions des prestataires font converger l'attente moyenne pondérée vers l'attente de référence du marché. Finalement, une expérience de laboratoire dans laquelle des sujets jouent le rôle de prestataire de service nous a permis de conclure que les délais d'installation et de démantèlement de capacité affectent de manière significative la performance et les décisions des sujets. En particulier, les décisions du prestataire, sont influencées par ses commandes en carnet, sa capacité de service actuellement disponible et les décisions d'ajustement de capacité qu'il a prises, mais pas encore implémentées. - Queuing is a fact of life that we witness daily. We all have had the experience of waiting in line for some reason and we also know that it is an annoying situation. As the adage says "time is money"; this is perhaps the best way of stating what queuing problems mean for customers. Human beings are not very tolerant, but they are even less so when having to wait in line for service. Banks, roads, post offices and restaurants are just some examples where people must wait for service. Studies of queuing phenomena have typically addressed the optimisation of performance measures (e.g. average waiting time, queue length and server utilisation rates) and the analysis of equilibrium solutions. The individual behaviour of the agents involved in queueing systems and their decision making process have received little attention. Although this work has been useful to improve the efficiency of many queueing systems, or to design new processes in social and physical systems, it has only provided us with a limited ability to explain the behaviour observed in many real queues. In this dissertation we differ from this traditional research by analysing how the agents involved in the system make decisions instead of focusing on optimising performance measures or analysing an equilibrium solution. This dissertation builds on and extends the framework proposed by van Ackere and Larsen (2004) and van Ackere et al. (2010). We focus on studying behavioural aspects in queueing systems and incorporate this still underdeveloped framework into the operations management field. In the first chapter of this thesis we provide a general introduction to the area, as well as an overview of the results. In Chapters 2 and 3, we use Cellular Automata (CA) to model service systems where captive interacting customers must decide each period which facility to join for service. They base this decision on their expectations of sojourn times. Each period, customers use new information (their most recent experience and that of their best performing neighbour) to form expectations of sojourn time at the different facilities. Customers update their expectations using an adaptive expectations process to combine their memory and their new information. We label "conservative" those customers who give more weight to their memory than to the xiv Summary new information. In contrast, when they give more weight to new information, we call them "reactive". In Chapter 2, we consider customers with different degree of risk-aversion who take into account uncertainty. They choose which facility to join based on an estimated upper-bound of the sojourn time which they compute using their perceptions of the average sojourn time and the level of uncertainty. We assume the same exogenous service capacity for all facilities, which remains constant throughout. We first analyse the collective behaviour generated by the customers' decisions. We show that the system achieves low weighted average sojourn times when the collective behaviour results in neighbourhoods of customers loyal to a facility and the customers are approximately equally split among all facilities. The lowest weighted average sojourn time is achieved when exactly the same number of customers patronises each facility, implying that they do not wish to switch facility. In this case, the system has achieved the Nash equilibrium. We show that there is a non-monotonic relationship between the degree of risk-aversion and system performance. Customers with an intermediate degree of riskaversion typically achieve higher sojourn times; in particular they rarely achieve the Nash equilibrium. Risk-neutral customers have the highest probability of achieving the Nash Equilibrium. Chapter 3 considers a service system similar to the previous one but with risk-neutral customers, and relaxes the assumption of exogenous service rates. In this sense, we model a queueing system with endogenous service rates by enabling managers to adjust the service capacity of the facilities. We assume that managers do so based on their perceptions of the arrival rates and use the same principle of adaptive expectations to model these perceptions. We consider service systems in which the managers' decisions take time to be implemented. Managers are characterised by a profile which is determined by the speed at which they update their perceptions, the speed at which they take decisions, and how coherent they are when accounting for their previous decisions still to be implemented when taking their next decision. We find that the managers' decisions exhibit a strong path-dependence: owing to the initial conditions of the model, the facilities of managers with identical profiles can evolve completely differently. In some cases the system becomes "locked-in" into a monopoly or duopoly situation. The competition between managers causes the weighted average sojourn time of the system to converge to the exogenous benchmark value which they use to estimate their desired capacity. Concerning the managers' profile, we found that the more conservative Summary xv a manager is regarding new information, the larger the market share his facility achieves. Additionally, the faster he takes decisions, the higher the probability that he achieves a monopoly position. In Chapter 4 we consider a one-server queueing system with non-captive customers. We carry out an experiment aimed at analysing the way human subjects, taking on the role of the manager, take decisions in a laboratory regarding the capacity of a service facility. We adapt the model proposed by van Ackere et al (2010). This model relaxes the assumption of a captive market and allows current customers to decide whether or not to use the facility. Additionally the facility also has potential customers who currently do not patronise it, but might consider doing so in the future. We identify three groups of subjects whose decisions cause similar behavioural patterns. These groups are labelled: gradual investors, lumpy investors, and random investor. Using an autocorrelation analysis of the subjects' decisions, we illustrate that these decisions are positively correlated to the decisions taken one period early. Subsequently we formulate a heuristic to model the decision rule considered by subjects in the laboratory. We found that this decision rule fits very well for those subjects who gradually adjust capacity, but it does not capture the behaviour of the subjects of the other two groups. In Chapter 5 we summarise the results and provide suggestions for further work. Our main contribution is the use of simulation and experimental methodologies to explain the collective behaviour generated by customers' and managers' decisions in queueing systems as well as the analysis of the individual behaviour of these agents. In this way, we differ from the typical literature related to queueing systems which focuses on optimising performance measures and the analysis of equilibrium solutions. Our work can be seen as a first step towards understanding the interaction between customer behaviour and the capacity adjustment process in queueing systems. This framework is still in its early stages and accordingly there is a large potential for further work that spans several research topics. Interesting extensions to this work include incorporating other characteristics of queueing systems which affect the customers' experience (e.g. balking, reneging and jockeying); providing customers and managers with additional information to take their decisions (e.g. service price, quality, customers' profile); analysing different decision rules and studying other characteristics which determine the profile of customers and managers.
Resumo:
RESUME LARGE PUBLIC Le système nerveux central est principalement composé de deux types de cellules :les neurones et les cellules gliales. Ces dernières, bien que l'emportant en nombre sur les neurones, ont longtemps été considérées comme des cellules sans intérêts par les neuroscientifiques. Hors, les connaissances modernes à leurs sujets indiquent qu'elles participent à la plupart des tâches physiologiques du cerveau. Plus particulièrement, elles prennent part aux processus énergétiques cérébraux. Ceux-ci, en plus d'être vitaux, sont particulièrement intrigants puisque le cerveau représente seulement 2 % de la masse corporelle mais consomme environ 25 % du glucose (substrat énergétique) corporel. Les astrocytes, un type de cellules gliales, jouent un rôle primordial dans cette formidable utilisation de glucose par le cerveau. En effet, l'activité neuronale (transmission de l'influx nerveux) est accompagnée d'une augmentation de la capture de glucose, issu de la circulation sanguine, par les astrocytes. Ce phénomène est appelé le «couplage neurométabolique » entre neurones et astrocytes. L'ion sodium fait partie des mécanismes cellulaires entrant en fonction lors de ces processus. Ainsi, dans le cadre de cette thèse, les aspects dynamiques de la régulation du sodium astrocytaire et leurs implications dans le couplage neurométabolique ont été étudiés par des techniques d'imagerie cellulaires. Ces études ont démontré que les mitochondries, machineries cellulaires convertissant l'énergie contenue dans le glucose, participent à la régulation du sodium astrocytaire. De plus, ce travail de thèse a permis de découvrir que les astrocytes sont capables de se transmettre, sous forme de vagues de sodium se propageant de cellules en cellules, un message donnant l'ordre d'accroître leur consommation d'énergie. Cette voie de signalisation leur permettrait de fournir de l'énergie aux neurones suite à leur activation. RESUME Le glutamate libéré dans la fente synaptique pendant l'activité neuronale, est éliminé par les astrocytes environnants. Le glutamate est co-transporté avec des ions sodiques, induisant une augmentation intracellulaire de sodium (Na+i) dans les astrocytes. Cette élévation de Na+i déclenche une cascade de mécanismes moléculaires qui aboutissent à la production de substrats énergétiques pouvant être utilisés par les neurones. Durant cette thèse, la mesure simultanée du sodium mitochondrial (Na+mit) et cytosolique par des techniques d'imagerie utilisant des sondes fluorescentes spécifiques, a indiqué que les variations de Na+i induites par le transport du glutamate sont transmises aux mitochondries. De plus, les voies d'entrée et de sortie du sodium mitochondrial ont été identifiées. L'échangeur de Na+ et de Ca2+ mitochondrial semble jouer un rôle primordial dans l'influx de Na+mit, alors que l'efflux de Na+mit est pris en charge par l'échangeur de Na+ et de H+ mitochondrial. L'étude du Na+mit a nécessité l'utilisation d'un système de photoactivation. Les sources de lumière ultraviolette (UV) classiques utilisées à cet effet (lasers, lampes à flash) ayant plusieurs désavantages, une alternative efficace et peu coûteuse a été développée. Il s'agit d'un système compact utilisant une diode électroluminescente (LED) à haute puissance et de longueur d'onde de 365nm. En plus de leurs rôles dans le couplage neurométabolique, les astrocytes participent à la signalisation multicellulaire en transmettant des vagues intercellulaires de calcium. Ce travail de thèse démontre également que des vagues intercellulaires de sodium peuvent être évoquées en parallèle à ces vagues calciques. Le glutamate, suite à sa libération par un mécanisme dépendent du calcium, est réabsorbé par les transporteurs au glutamate. Ce mécanisme a pour conséquence la génération de vagues sodiques se propageant de cellules en cellules. De plus, ces vagues sodiques sont corrélées spatialement avec une consommation accrue de glucose par les astrocytes. En conclusion, ce travail de thèse a permis de montrer que le signal sodique astrocytaire, déclenché en réponse au glutamate, se propage à la fois de façon intracellulaire aux mitochondries et de façon intercellulaire. Ces résultats suggèrent que les astrocytes fonctionnent comme un réseau de cellules nécessaire au couplage énergétique concerté entre neurones et astrocytes et que le sodium est un élément clé dans les mécanismes de signalisations cellulaires sous-jacents. SUMMARY Glutamate, released in the synaptic cleft during neuronal activity, is removed by surrounding astrocytes. Glutamate is taken-up with Na+ ions by specific transporters, inducing an intracellular Na+ (Na+i) elevation in astrocytes which triggers a cascade of molecular mechanisms that provides metabolic substrates to neurons. Thus, astrocytic Na+i homeostasis represents a key component of the so-called neurometabolic coupling. In this context, the first part of this thesis work was aimed at investigating whether cytosolic Na+ changes are transmitted to mitochondria, which could therefore influence their function and contribute to the overall intracellular Na+ regulation. Simultaneous monitoring of both mitochondrial Na+ (Na+mit) and cytosolic Na+ changes with fluorescent dyes revealed that glutamate-evoked cytosolic Na+ elevations are indeed transmitted to mitochondria. The mitochondrial Na+/Ca2+ exchangers have a prominent role in the regulation of Na+mit influx pathway, and Na+mit extrusion appears to be mediated by Na+/H+ exchangers. To demonstrate the implication of Na+/Ca2+ exchangers, this study has required the technical development of an UV-flash photolysis system. Because light sources for flash photolysis have to be powerful and in the near UV range, the use of UV lasers or flash lamps is usually required. As an alternative to these UV sources that have several drawbaks, we developped a compact, efficient and lowcost flash photolysis system which employs a high power 365nm light emitting diode. In addition to their role in neurometabolic coupling, astrocytes participate in multicellular signaling by transmitting intercellular Ca2+ waves. The third part of this thesis show that intercellular Na+ waves can be evoked in parallel to Ca2+ waves. Glutamate released by a Ca2+ wave-dependent mechanism is taken up by glutamate transporters, resulting in a regenerative propagation of cytosolic Na+ increases. Na+ waves in turn lead to a spatially correlated increase in glucose uptake. In conclusion, the present thesis demonstrates that glutamate-induced Na+ changes occurring in the cytosol of astrocytes propagate to both the mitochondrial matrix and the astrocytic network. These results furthermore support the view that astrocytic Na+ is a signal coupled to the brain energy metabolism.