933 resultados para Carbohydrate-deficient Transferrin
Resumo:
Background: Elderly patients with chronic obstructive pulmonary disease (COPD) usually have a compromised nutritional status which is an independent predictor of morbidity and mortality. To know the Resting Energy Expenditure (REE) and the substrate oxidation measurement is essential to prevent these complications. This study aimed to compare the REE, respiratory quotient (RQ) and body composition between patients with and without COPD.Methods: This case-control study assessed 20 patients with chronic obstructive pulmonary disease attending a pulmonary rehabilitation program. The group of subjects without COPD (control group) consisted of 20 elderly patients attending a university gym, patients of a private service and a public healthy care. Consumption of oxygen (O-2) and carbon dioxide (CO2) was determined by indirect calorimetry and used for calculating the resting energy expenditure and respiratory quotient. Body mass index (BMI) and waist circumference (WC) were also measured. Percentage of body fat (%BF), lean mass (kg) and muscle mass (kg) were determined by bioimpedance. The fat free mass index (FFMI) and muscle mass index (MMI) were then calculated.Results: The COPD group had lower BMI than control (p = 0.02). However, WC, % BF, FFMI and MM-I did not differ between the groups. The COPD group had greater RQ (p = 0.01), REE (p = 0.009) and carbohydrate oxidation (p = 0.002).Conclusions: Elderly patients with COPD had higher REE, RQ and carbohydrate oxidation than controls.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A large number of functional foods, including those that contain P-glucan, have been shown to prevent the development of cancer and other chronic diseases. The aim of the present study was to elucidate its mechanism of action, as well as to understand its effects as an antigenotoxic, anticlastogenic agent, and to determine its capacity to preserve cell viability. The investigation was carried out in the CHO-k1 and CHO-xrs5 cell lines. The cytokinesis-blocked micronucleus assay indicated that the different doses of beta-glucan examined (5, 10, 20 and 40 mu g/ml) did not show clastogenic effects. In the CHO-k1 cell line, a chemopreventive effect could be observed in all the protocols tested: pre-treatment (% reduction of 35.0-57.3), simultaneous treatment (simple - 5 reduction of 19.7-55.6 and with pre-incubation - of 42.7-56.4) and post-treatment (% reduction of 17.9-37.6). This finding indicates mechanisms of action involving desmutagenesis and bio-antimutagenesis, albeit the latter having a lesser role. However, in the repair-deficient CHO-xrs5 cells, beta-glucan did not show a protective effect with post-treatment (% reduction of 2.96), thus supporting the involvement of bioantimutagenesis. The comet assay in CHO-k1 cells demonstrated that beta-glucan has neither a genotoxic nor an antigenotoxic effect. Cell viability tests indicated that beta-glucan preserves cell viability in both cell lines, preventing apoptotic events. These findings suggest that beta-glucan, when present in foods, could provide them with nutraceutical characteristics and act as a dietary supplement, or that P-glucan could be used in new drug development. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Ethanol can compromise the body mineral composition and affect bone, and when associated to hypogonadism is considered an important risk factor for osteoporosis in man. The aim of this study was to investigate the effect of androgen deficient and chronic ethanol consuming on mineral contents by biochemistry and non-destructive techniques. Wistar rat (n=54) were divided in orchiectomy (ORQ) or SHAM-operated and subdivided by diet. They were daily fed with a Lieber DeCarli diet model for 8 weeks long. The controls groups were free-diet and pair-fed. Ca and P were analyzed by biochemistry test in the blood and by nX-ray fluorescence and FT-Raman on the femur area. Serum analysis revealed hypocalcaemia and hypeiphosphataemia in ethanol groups more than pair-fed and free-diet. In similarity, spectroscopy indicated a decrease in bone Ca content in ORQ groups, mainly for ethanol groups. Phosphorus content and Ca/P molar ratio, otherwise, doesn't diverge in all 6 groups. Ethanol consumption impaired Ca and P homeostasis in ORQ rat more than SHAM. The relationships among ethanol consume and androgen deficit support the hypothesis that ethanol affects the mineral-regulating hormones and may mediate some effects on bone. These findings demonstrate that ethanol seemed to interfere with the normal compensatory response to these Ca and P levels and is more significant M androgen deficiency rats.
Resumo:
Quartz Crystal Microbalance (QCM) was used to monitor the mass changes on a quartz crystal surface containing immobilized lectins that interacted with carbohydrates. The strategy for lectin immobilization was developed on the basis of a multilayer system composed of Au-cystamine-glutaraldehyde-lectin. Each step of the immobilization procedure was confirmed by FTIR analysis. The system was used to study the interactions of Concanavalin A (ConA) with maltose and Jacalin with Fetuin. The real-time binding of different concentrations of carbohydrate to the immobilized lectin was monitored by means of QCM measurements and the data obtained allowed for the construction of Langmuir isotherm curves. The association constants determined for the specific interactions analyzed here were (6.4 +/- 0.2) X 10(4) M-1 for Jacalin-Fetuin and (4.5 +/- 0.1) x 10(2) M-1 for ConA-maltose. These results indicate that the QCM constitutes a suitable method for the analysis of lectin-carbohydrate interactions, even when assaying low molecular mass ligands such as disaccharides. Published by Elsevier B.V.
Resumo:
Carbohydrates and cultures of faecal microflora were administered to newly hatched chicks to prevent infection with Salmonella typhimurium Salmonella enteritidis, Salmonella agona and Salmonella infantis. Birds were killed 72 hours after challenge and the number of viable Salmonella organisms in their caecal contents estimated. Carbohydrates did not promote efficient control of infection with the Salmonella serotypes tested whereas cultures of faecal microflora completely prevented infection with all serotypes.
Resumo:
The phycoerythrin-deficient strain (green phenotype) of Hypnea musciformis (Rhodophyta) originated from a green branch, which had arisen as a spontaneous mutation in a wild plant (brown phenotype) collected from the Brazilian coast. The present study describes the growth responses to irradiance, photoperiod and temperature variations, pigment contents, and photosynthetic characteristics of the brown and green strains of H. musciformis. The results showed that growth rates increased as a function of irradiance (up to 40 mu mol photons m(-2) s(-1)) but, with further increase in irradiance (from 40 to 120 mu mol photons m(-2) s(-1)), became light-saturated and remained almost unchanged. The highest growth rates of the brown and green strains were observed in temperatures of 20-25 degrees C under long (14:10 h LD) and short (10:14 h LD) photoperiods. The brown strain had higher growth rates than the green strain in the short photoperiod, which could be related to the high concentrations of phycobiliproteins. Phycoerythrin was not detected in the green strain. The brown strain had higher concentrations of allophycocyanin and phycoerythrin in the short photoperiod while the green strain had higher concentrations of phycocyanin. The brown strain presented higher photosynthetic efficiency (alpha), and lower saturation parameter (I-k) and compensation irradiance (I-c) than the green strain. The brown strain exhibited the characteristics of shade-adapted plants, and its higher value of photosynthetic efficiency could be attributed to the higher phycoerythrin concentrations. Results of the present study indicate that both colour strains of H. musciformis could be selected for aquaculture, since growth rates were similar (although in different optimal light conditions), as the green strain seems to be adapted to higher light levels than the brown strain. Furthermore, these colour strains could be a useful experimental system to understand the regulation of biochemical processes of photosynthesis and metabolism of light-harvesting pigments in red algae.
Resumo:
Although mineral nutrition affects maize (Zea mays L.) yield by controlling starch deposition in kernels, the mechanisms involved are largely unknown. Our objectives were to examine this relationship by nutritionally and genetically altering starch production in the endosperm. Kernels of W64A and two starch-deficient mutants, shrunken-1 and brittle-2, were grown in vitro with varying supplies of N (0-50 mM) or P (0-6 mM) to produce different degrees of endosperm starch production, and the levels of enzyme activities and metabolites associated with carbohydrate and N metabolism were examined. In vitro grown kernels exhibited the expected starch phenotypes, and a minimum level of media N (25 mM) and P (2 mM) was required for optimal growth. However, increasing the availability of N or P could not overcome the genetically induced decrease in starch deposition of the mutants. Nitrogen deficiency enhanced sugar accumulation, but decreased amino acid levels, soluble protein, enzyme activity, starch synthesis, and endosperm dry weight. Phosphorous deficiency also decreased starch production and endosperm dry weight, but with only a minimal effect on the activities of ADP-glucose pyrophosphorylase and alanine transaminase. Genotypic differences in endosperm starch, and the increases induced by N and P supply, Here closely associated with the level of endosperm N, but not endosperm P. Thus, while both N and P are crucial for optimal yield of maize grain, they appear to act by different means, and with different importance in governing starch deposition in the endosperm.
Resumo:
Three pens of male broiler chicks were raised under standard conditions and fed from 7 to 42 days of age three isocaloric diets each with 15.8; 19.6 and 19.5% of CP; and 51, 51, and 44% of CHO; and 6.5; 3.0 and 7.7% of fat, and designated as the low protein (LowCP), low lipid (LowL) and low carbohydrate (LowCHO) diets, respectively. Body weights and feed intake were monitored weekly and blood samples were collected at the same time for posterior analysis of hormone and metabolite content. Chickens fed the LowCP diet were characterized by a reduced body weight gain and feed intake and poorer feed conversion efficiency compared to those fed the LowL and LowCHO diets, which were very similar in this respect. Plasma corticosterone and glucose levels and creatine kinase activity were not significantly changed by diet composition. LowCP chickens were characterised by the lowest plasma T-4 and uric acid levels (indicative for reduced protein breakdown and lower protein ingestion) but highest plasma triglyceride levels (congruent with their higher fat deposition) compared to the LowL and LowCHO chickens. LowL chickens had on average higher plasma T-3 and free fatty acid levels compared to the LowCP and LowCHO chickens.In conclusion, a limited substitution of carbohydrate for fat in iso-nitrogenous, iso-energetic diets has no pronounced effects on plasma hormone and metabolite levels, except for the elevation in T-3 (may enhance glucose uptake) and free fatty acid levels in the plasma of the chickens fed the LowL diet. The protein content of the diet has a greater impact on zootechnical performance, and underlying endocrine regulation of the intermediary metabolism compared to the dietary lipid and CHO fraction. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
The purpose of this study was to examine in rats the histologic alterations of the submandibular glands and testicles induced by soy diets and zinc deficients diet. The zinc deficiency produced testicles alterations including seminiferous tubulus atrophy, germinative epithelium degeneration, spermatogenesis alterations and a significant atrophy of the submandibular glands which presented no much delimitated acines. The soy diet without complementations also compromised the spermatogenesis by showing seminiferous tubulus atrophied and a reduction of the germinative epithelium. The soy diet complemented by saline and vitaminic mixtures didn't produced testicles alterations but its induced in the submandibular glands a hypertrophy of the ductal component mainly in relation to the granular component.