889 resultados para Caputo Fractional Derivative


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the analysis and design of a new low power and highly linear mixer topology based on a newly reported differential derivative superposition method. Volterra series and harmonic balance are employed to investigate its linearisation mechanism and to optimise the design. A prototype mixer has been designed and is being implemented in 0.18μm CMOS technology. Simulation shows this mixer achieves 19.7dBm IIP3 with 10.5dB conversion gain, 13.2dB noise figure at 2.4GHz and only 3.8mW power consumption. This performance is competitive with already reported mixers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Integration of viral-DNA into host chromosome mediated by the viral protein HIV-1 integrase (IN) is an essential step in the HIV-1 life cycle. In this process, Lens epithelium-derived growth factor (LEDGF/p75) is discovered to function as a cellular co-fa

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recently there has been interest in combined gen- erative/discriminative classifiers. In these classifiers features for the discriminative models are derived from generative kernels. One advantage of using generative kernels is that systematic approaches exist how to introduce complex dependencies beyond conditional independence assumptions. Furthermore, by using generative kernels model-based compensation/adaptation tech- niques can be applied to make discriminative models robust to noise/speaker conditions. This paper extends previous work with combined generative/discriminative classifiers in several directions. First, it introduces derivative kernels based on context- dependent generative models. Second, it describes how derivative kernels can be incorporated in continuous discriminative models. Third, it addresses the issues associated with large number of classes and parameters when context-dependent models and high- dimensional features of derivative kernels are used. The approach is evaluated on two noise-corrupted tasks: small vocabulary AURORA 2 and medium-to-large vocabulary AURORA 4 task.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recently there has been interest in combining generative and discriminative classifiers. In these classifiers features for the discriminative models are derived from the generative kernels. One advantage of using generative kernels is that systematic approaches exist to introduce complex dependencies into the feature-space. Furthermore, as the features are based on generative models standard model-based compensation and adaptation techniques can be applied to make discriminative models robust to noise and speaker conditions. This paper extends previous work in this framework in several directions. First, it introduces derivative kernels based on context-dependent generative models. Second, it describes how derivative kernels can be incorporated in structured discriminative models. Third, it addresses the issues associated with large number of classes and parameters when context-dependent models and high-dimensional feature-spaces of derivative kernels are used. The approach is evaluated on two noise-corrupted tasks: small vocabulary AURORA 2 and medium-to-large vocabulary AURORA 4 task. © 2011 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is shown that reflective liquid crystal on silicon (LCOS) spatial light modulator (SLM) based interconnects or fiber switches that use defocus to reduce crosstalk can be evaluated and optimized using a fractional Fourier transform if certain optical symmetry conditions are met. Theoretically the maximum allowable linear hologram phase error compared to a Fourier switch is increased by a factor of six before the target crosstalk for telecom applications of -40 dB is exceeded. A Gerchberg-Saxton algorithm incorporating a fractional Fourier transform modified for use with a reflective LCOS SLM is used to optimize multi-casting holograms in a prototype telecom switch. Experiments are in close agreement to predicted performance. © 2012 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development of transparent radio-frequency electronics has been limited, until recently, by the lack of suitable materials. Naturally thin and transparent graphene may lead to disruptive innovations in such applications. Here, we realize optically transparent broadband absorbers operating in the millimetre wave regime achieved by stacking graphene bearing quartz substrates on a ground plate. Broadband absorption is a result of mutually coupled Fabry-Perot resonators represented by each graphene-quartz substrate. An analytical model has been developed to predict the absorption performance and the angular dependence of the absorber. Using a repeated transfer-and-etch process, multilayer graphene was processed to control its surface resistivity. Millimetre wave reflectometer measurements of the stacked graphene-quartz absorbers demonstrated excellent broadband absorption of 90% with a 28% fractional bandwidth from 125-165 GHz. Our data suggests that the absorbers' operation can also be extended to microwave and low-terahertz bands with negligible loss in performance.