462 resultados para Calcination


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Perovskite, single multiferroic bismuth ferrite was prepared by two chemical methods: auto-combustion and soft chemical route. Influence of different fuels and complexing agents and thermal treatment on purity of bismuth ferrite powders and density of bismuth ferrite ceramics were investigated. X-ray diffraction technique (XRD) indicated that optimal temperatures and times for calcination and sintering are 600 degrees C for 2 h and 800 degrees C for 1 h with quenching, respectively. Scanning electron microscopy (SEM) analysis showed that soft route synthesized samples formed softer agglomerates and smaller grains with less secondary phases. Powders and pellets were characterized by Brunauer Emmett Teller (BET) specific surface area analysis, particle size distribution, Fourier transform infrared spectroscopy (FT-IR), dilatometry, Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), dielectric and magnetic measurements. Resistivity and origin of electrical resistance were studied by means of impedance measurements. (C) 2014 Elsevier Ltd and Techna Group S.r.l. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work aims to synthesize the manganese and zinc ferrite, by the polymeric precursor method, in order to obtain materials with appropriate characteristics for the application in medical diagnosis techniques. The manganese and zinc ferrite powders with the composition of Mn(1-x)ZnxFe2O4, where x=0,23, were prepared and calcined in air at different times and temperatures. The X-ray diffraction (XRD) data show that the sample calcined at 400°C crystallize as ferrite (monophase), but in an inverted spinel structure (high content of iron occupying manganese tetrahedral site and manganese occupying the iron octahedral site). The samples calcined at temperatures between 600°C and 900°C shows the secondary phase of hematite and the sample calcined at 1100oC shows to be monophase in ferrite with normal spinel structure. The monophase powders of ferrite showed a reduction in the surface area and an increasing in the pore size for higher calcination temperatures. The magnetic analysis show that the sample calcined at 400°C presents satisfactory magnetization at room temperature, however, it behaves as diamagnetic material at low temperatures (10K). The powder containing hematite, without the partial substitution of iron ions by manganese, showed to have low transition temperature, and consequently low magnetization at room temperature. The hematite, when partially substituted, provides materials with irregular magnetization at the saturation region. The powder calcined at 1100°C shows high magnetization either at room temperature or low temperature (10K)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The study of ceramic materials is constantly evolving, especially in research related to advanced ceramics. Once these have many applications, this paper relates to synthesis by solid state reaction of calcium copper titanate (CCTO) ceramic material means doping with strontium. The powders were characterized using thermal analysis techniques such as TG (thermogravimetry), DTA (differencial thermal analysis), dilatometry, X-ray diffraction (XRD) and scanning electron microscopy (SEM). The compositions have submitted weight loss at around 6% with respect to carbonates used, and was attributed a temperature of 950° C to perform the calcination according to thermogravimetric analysis. After the process of calcination and milling, the particles presented approximately spherical shapes and high percentages of substitution Ca2+ with Sr2+ was evident by the presence of necks between to particles due to the milling calcination. Analyses with Energy Dispersive Spectroscopy (EDS) showed stoichiometries in different samples very similar to the theoretical stoichiometry

Relevância:

10.00% 10.00%

Publicador:

Resumo:

As they have excellent mechanical properties, corrosion resistance and biocompatibility, much research has been conducted with respect to biomedical applications of titanium alloys. This work aims to study the experimental system binary alloy Ti-15Mo, in the raw state of fusion and heat treatment after homogenization, solubilization and calcination (simulating conditions employed for nanotube growth) targeting biomedical applications. Samples were obtained by casting the components in an electric arc furnace with inert atmosphere of argon. After obtaining the alloy, it was heat treated at three different heat treatments, namely homogenizing, calcining and simulation solubilization. The phases present were analyzed by X-ray diffraction, optical microscopy and microhardness testing

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ceramic pigments are colored inorganic substances that during the process of dispersion in the ceramic glazes and subsequent calcination, are stable against physical and chemical attack. Therefore, they are crystalline compounds applied in the ceramic industry for coloring vitreous base. In this study, the Pechini method was used for obtaining the pigment CuCr2O4 with heat treatment at the temperatures of 800, 900 and 1000 ° C. The powder pigments were characterized on their structural, morphological and colorimetric aspects. The thermal analysis conducted on an amorphous precursor in a TG / DTA indicates the weight loss in the entire temperature range investigated, with characteristic exothermic peak of the elimination of the organic composition of the precursor around 300°C. The development of the crystalline phases were investigated by XRD, using a diffractometer with Cu Ka radiation and graphite monochromator, where it was observed the presence of crystalline phases corresponding to Cr2O3 and CuCr2O4.The measurements of the specific surface area of the powders pigments were carried out in an equipment Micromeritcs, model ASAP 2000, using N2 as gas of adsorption/desorption. The colorimetric measurements of the pigments were made in a colorimeter Gretac Macbeth Color-eye spectrophotometer 2180 / 2180UV in CIELAB standards. Based on the obtained results, it can be verified the thermal stability of the powder pigments of green coloration, which enables it as an alternative to the materials currently used in the manufacture of ceramic tiles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Polymeric Precursor Method has proved suitable for synthesizing reactive powders using low temperatures of calcination, especially when compared with conventional methods. However, during the thermal decomposition of the polymeric precursor the combustion event can be releases an additional heat that raises the temperature of the sample in several tens of degrees Celsius above the set temperature of the oven. This event may be detrimental to some material types, such as the titanium dioxide semiconductor. This ceramic material has a phase transition at around 600 ° C, which involves the irreversible structural rearrangement, characterized by the phase transition from anatase to rutile TiO2 phase. The control of the calcination step then becomes very important because the efficiency of the photocatalyst is dependent on the amount of anatase phase in the material. Furthermore, use of dopant in the material aims to improve various properties, such as increasing the absorption of radiation and in the time of the excited state, shifting of the absorption edge to the visible region, and increasing of the thermal stability of anatase. In this work, samples of titanium dioxide were synthesized by the Polymeric Precursor Method in order to investigate the effect of Fe (III) doping on the calcination stages. Thermal analysis has demonstrated that the Fe (III) insertion at 1 mol% anticipates the organic decomposition, reducing the combustion event in the final calcination. Furthermore, FTIR-PAS, XRD and SEM results showed that organic matter amount was reduced in the Fe (III)-doped TiO2 sample, which reduced the rutile phase amount and increased the reactivity and crystallinity of the powder samples.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pechini's method has been successfully used to prepare Li-doped MgNb2O6(MN) at short time and low temperature. It consists in the preparation of metal citrate solution, which is polymerized at 250°C to form a high viscous resin. This resin was burned in a box type furnace at 400°C/2h and ground in a mortar. Successive steps of calcination up to 900°C were used to form a crystalline precursor. SEM, DTA and XRD were used to characterize the powders. MN precursor powders containing from 0.1 to 5.0 mol% of LiNbO3 additive was prepared aiming better dielectric properties and microstructural characteristics of the PMN prepared from columbite route. SEM analysis showed that particles increased by sintering, forming large agglomerates. The surface area is also substantially reduced with the increase in additive amount above 1.0 mol%. In XRD pattern of the precursor material with 5.0 mol% of additive was observed the LiNbO3 phase of trigonal structure. XRD data were used for Rietveld refinement and a decrease in microstrain and pronounced increase in crystallite size with the increase of LiNbO3 were observed. It is in agreement with the particle morphologies observed by SEM analysis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)