958 resultados para CYTOKINE-INDUCED APOPTOSIS
Resumo:
For many years the epidemiological significance of immunity in human schistosomiasis has been the subject of inconclusive debate. Recently, the results of studies from Brazil and Kenya, on Shistosoma mansoni and from Zimbabwe and The Gambia on S. haematobium have confirmed the importance of protective immunity. In communities in endemic areas the development of immunity to infection only occurs after many years of exposure. In part this due to the slow development of antibodies wich are protective but also to the earlier development of antibody isotypes which lack protective capacity and wich are capable of interfering with the functioning of protective antibodies. Protective antibodies appear to be of the IgE class but some IgG subclasses may be also be important. Initially, blocking antibodies were thought to be predominantly IgM and IgG2 but IgG4 also seems to posses blocking activity. The early production of blocking antibodies and late production of protective antibodies may be indicative of cytokine induced immunoglobulin class swiching caused by the sequential involvment of different lymphokines.
Resumo:
PIDD has been implicated in survival and apoptotic pathways in response to DNA damage, and a role for PIDD was recently identified in non-homologous end-joining (NHEJ) repair induced by γ-irradiation. Here, we present an interaction of PIDD with PCNA, first identified in a proteomics screen. PCNA has essential functions in DNA replication and repair following UV irradiation. Translesion synthesis (TLS) is a process that prevents UV irradiation-induced replication blockage and is characterized by PCNA monoubiquitination and interaction with the TLS polymerase eta (polη). Both of these processes are inhibited by p21. We report that PIDD modulates p21-PCNA dissociation, and promotes PCNA monoubiquitination and interaction with polη in response to UV irradiation. Furthermore, PIDD deficiency leads to a defect in TLS that is associated, both in vitro and in vivo, with cellular sensitization to UV-induced apoptosis. Thus, PIDD performs key functions upon UV irradiation, including TLS, NHEJ, NF-κB activation and cell death.
Resumo:
Mycophenolic acid, a selective inhibitor of the de novo synthesis of guanosine nucleotides in T and B lymphocytes, has been proposed to inhibit human immunodeficiency virus (HIV) replication in vitro by depleting the substrate (guanosine nucleotides) for reverse transcriptase. Here we show that mycophenolic acid induced apoptosis and cell death in a large proportion of activated CD4+ T cells, thus indicating that it may inhibit HIV infection in vitro by both virological mechanisms and immunological mechanisms (depletion of the pool of activated CD4+ T lymphocytes). Administration of mycophenolate mophetil, the ester derivate of mycophenolic acid, to HIV-infected subjects treated with anti-retroviral therapy and with undetectable viremia resulted in the reduction of the number of dividing CD4 + and CD8+ T cells and in the inhibition of virus isolation from purified CD4+ T-cell populations. Based on these results, the potential use of mycophenolate mophetil in the treatment of HIV infection deserves further investigation in controlled clinical trials.
Resumo:
The increase of cancer specificity and efficacy of anti-tumoral agents are prime strategies to overcome the deleterious side effects associated with anti-cancer treatments. We described earlier a cell-permeable protease-resistant peptide derived from the p120 RasGAP protein, called TAT-RasGAP317-326, as being an efficient tumor-specific sensitizer to apoptosis induced by genotoxins in vitro and in vivo. Bcl-2 family members regulate the intrinsic apoptotic response and as such could be targeted by TAT-RasGAP317-326. Our results indicate that the RasGAP-derived peptide increases cisplatin-induced Bax activation. We found no evidence, using in particular knock-out cells, of an involvement of other Bcl-2 family proteins in the tumor-specific sensitization activity of TAT-RasGAP317-326. The absence of Bax and Bak in mouse embryonic fibroblasts rendered them resistant to cisplatin-induced apoptosis and consequently to the sensitizing action of the RasGAP-derived peptide. Surprisingly, in the HCT116 colon carcinoma cell line, the absence of Bax and Bak did not prevent cisplatin-induced apoptosis and the ability of TAT-RasGAP317-326 to augment this response. Our study also revealed that p53, while required for an efficient genotoxin-induced apoptotic response, is dispensable for the ability of the RasGAP-derived peptide to improve the capacity of genotoxins to decrease long-term survival of cancer cells. Hence, even though genotoxin-induced Bax activity can be increased by TAT-RasGAP317-326, the sensitizing activity of the RasGAP-derived peptide can operate in the absence of a functional mitochondrial intrinsic death pathway.
Resumo:
We have previously reported that in tumorigenic pancreatic beta-cells, calcitriol exerts a potent antitumorigenic effect by inducing apoptosis, cell growth inhibition, and reduction of solid beta-cell tumors. Here we have studied the molecular pathways involved in the antineoplastic activity of calcitriol on mouse insulinoma beta TC(3) cells, mouse insulinoma beta TC expressing or not expressing the oncogene p53, and beta TC-tet cells overexpressing or not the antiapoptotic gene Bcl2. Our results indicate that calcitriol-induced apoptosis was dependent on the function of p53 and was associated with a biphasic increase in protein levels of transcription factor nuclear factor-kappa B. Calcitriol decreased cell viability by about 40% in p53-retaining beta TC and in beta TC(3) cells; in contrast, beta TC p53(-/-) cells were only minimally affected. Calcitriol-induced cell death was regulated by members of the Bcl-2 family of apoptosis regulatory proteins, as shown by calcitriol-induced up-regulation of proapoptotic Bax and Bak and the lack of calcitriol-induced cytotoxicity in Bcl-2-overexpressing insulinoma cells. Moreover, calcitriol-mediated arrest of beta TC(3) cells in the G(1) phase of the cell cycle was associated with the abnormal expression of p21 and G(2)/M-specific cyclin B2 genes and involved the DNA damage-inducible factor GADD45. Finally, in beta TC(3) cells, calcitriol modulated the expression of IGF-I and IGF-II genes. In conclusion, these findings contribute to the understanding of the antitumorigenic effects of calcitriol on tumorigenic pancreatic beta-cells and further support the rationale of its utilization in the treatment of patients with malignant insulinomas.
Resumo:
El sarcoma de Ewing es el segundo tumor óseo infantil más frecuente y presenta una alta incidencia de enfermedad metastática. Este tipo de tumores presentan una traslocación génica característica que da origen a una proteína de fusión, normalmente EWS/FLI1. Esta proteína de fusión actúa como factor de transcripción aberrante regulando la expresión de diferentes genes implicados en la iniciación, mantenimiento y progresión del tumor. Nuestro grupo describió como uno de estos genes diana a la caveolina 1 (CAV1) describiendo además su papel determinante en el fenotipo maligno del sarcoma de Ewing, en la tumorigénesis y en la resistencia a apoptosis inducida por quimioterapia. Para investigar el papel concreto de CAV1 en el proceso metastático de este sarcoma, creamos un modelo de baja expresión de CAV1 en líneas celulares de sarcoma de Ewing y determinamos cambios en su capacidad migratoria, invasiva y metastática. En los ensayos in vitro hallamos una menor capacidad migratoria de las células knockdown de CAV1 y una reducción en la expresión de MMP9 y en la actividad de MMP2. La regulación de la actividad de MMP2 parece estar relacionada con la posible regulación que ejerce CAV1 en la función de MT1-MMP, proteína fundamental para la activación de MMP2. Por otro lado, en este estudio proponemos que CAV1 promueve la expresión de MMP9 tanto transcripcionalmente, regulando la vía de señalización ERK1/2, como a nivel post-transcripcional regulando la vía RSK1/rpS6. Además, en los ensayos de metástasis experimental in vivo las células knockdown de CAV1 presentaron una menor incidencia de metástasis pulmonar, hecho que correlacionó con una disminución en la expresión de SPARC, una proteína de adhesión importante en procesos metastáticos. En resumen, nuestros resultados evidencian la importancia de CAV1 en el proceso metastático del sarcoma de Ewing.
Resumo:
BACKGROUND Phytopharmacological studies of different Calendula extracts have shown anti-inflammatory, anti-viral and anti-genotoxic properties of therapeutic interest. In this study, we evaluated the in vitro cytotoxic anti-tumor and immunomodulatory activities and in vivo anti-tumor effect of Laser Activated Calendula Extract (LACE), a novel extract of the plant Calendula Officinalis (Asteraceae). METHODS An aqueous extract of Calendula Officinalis was obtained by a novel extraction method in order to measure its anti-tumor and immunomodulatory activities in vitro. Tumor cell lines derived from leukemias, melanomas, fibrosarcomas and cancers of breast, prostate, cervix, lung, pancreas and colorectal were used and tumor cell proliferation in vitro was measured by BrdU incorporation and viable cell count. Effect of LACE on human peripheral blood lymphocyte (PBL) proliferation in vitro was also analyzed. Studies of cell cycle and apoptosis were performed in LACE-treated cells. In vivo anti-tumor activity was evaluated in nude mice bearing subcutaneously human Ando-2 melanoma cells. RESULTS The LACE extract showed a potent in vitro inhibition of tumor cell proliferation when tested on a wide variety of human and murine tumor cell lines. The inhibition ranged from 70 to 100%. Mechanisms of inhibition were identified as cell cycle arrest in G0/G1 phase and Caspase-3-induced apoptosis. Interestingly, the same extract showed an opposite effect when tested on PBLs and NKL cell line, in which in vitro induction of proliferation and activation of these cells was observed. The intraperitoneal injection or oral administration of LACE extract in nude mice inhibits in vivo tumor growth of Ando-2 melanoma cells and prolongs the survival day of the mice. CONCLUSION These results indicate that LACE aqueous extract has two complementary activities in vitro with potential anti-tumor therapeutic effect: cytotoxic tumor cell activity and lymphocyte activation. The LACE extract presented in vivo anti-tumoral activity in nude mice against tumor growth of Ando-2 melanoma cells.
Resumo:
Impact of immune microenvironment in prognosis of solid tumors has been extensively studied in the last few years. Specifically in colorectal carcinoma, increased knowledge of the immune events around these tumors and their relation with clinical outcomes have led to consider immune microenvironment as one of the most important prognostic factors in this disease. In this review we will summarize and update the current knowledge with respect to this intriguing and complex new hallmark of cancer, paying special attention to infiltration by T-infiltrating lymphocytes and their subtypes in colorectal cancer, as well as its eventual clinical translation in terms of long-term prognosis. Finally, we suggest some possible investigational approaches based on combinatorial strategies to trigger and boost immune reaction against tumor cells.
Resumo:
BACKGROUND Phytopharmacological studies of different Calendula extracts have shown anti-inflammatory, anti-viral and anti-genotoxic properties of therapeutic interest. In this study, we evaluated the in vitro cytotoxic anti-tumor and immunomodulatory activities and in vivo anti-tumor effect of Laser Activated Calendula Extract (LACE), a novel extract of the plant Calendula Officinalis (Asteraceae). METHODS An aqueous extract of Calendula Officinalis was obtained by a novel extraction method in order to measure its anti-tumor and immunomodulatory activities in vitro. Tumor cell lines derived from leukemias, melanomas, fibrosarcomas and cancers of breast, prostate, cervix, lung, pancreas and colorectal were used and tumor cell proliferation in vitro was measured by BrdU incorporation and viable cell count. Effect of LACE on human peripheral blood lymphocyte (PBL) proliferation in vitro was also analyzed. Studies of cell cycle and apoptosis were performed in LACE-treated cells. In vivo anti-tumor activity was evaluated in nude mice bearing subcutaneously human Ando-2 melanoma cells. RESULTS The LACE extract showed a potent in vitro inhibition of tumor cell proliferation when tested on a wide variety of human and murine tumor cell lines. The inhibition ranged from 70 to 100%. Mechanisms of inhibition were identified as cell cycle arrest in G0/G1 phase and Caspase-3-induced apoptosis. Interestingly, the same extract showed an opposite effect when tested on PBLs and NKL cell line, in which in vitro induction of proliferation and activation of these cells was observed. The intraperitoneal injection or oral administration of LACE extract in nude mice inhibits in vivo tumor growth of Ando-2 melanoma cells and prolongs the survival day of the mice. CONCLUSION These results indicate that LACE aqueous extract has two complementary activities in vitro with potential anti-tumor therapeutic effect: cytotoxic tumor cell activity and lymphocyte activation. The LACE extract presented in vivo anti-tumoral activity in nude mice against tumor growth of Ando-2 melanoma cells.
Resumo:
OBJECTIVE It has been suggested that interleukin (IL)-6 is one of the mediators linking obesity-derived chronic inflammation with insulin resistance through activation of STAT3, with subsequent upregulation of suppressor of cytokine signaling 3 (SOCS3). We evaluated whether peroxisome proliferator-activated receptor (PPAR)-β/-δ prevented activation of the IL-6-STAT3-SOCS3 pathway and insulin resistance in adipocytes. RESEARCH DESIGN AND METHODS First, we observed that the PPAR-β/-δ agonist GW501516 prevented both IL-6-dependent reduction in insulin-stimulated Akt phosphorylation and glucose uptake in adipocytes. In addition, this drug treatment abolished IL-6-induced SOCS3 expression in differentiated 3T3-L1 adipocytes. This effect was associated with the capacity of the drug to prevent IL-6-induced STAT3 phosphorylation on Tyr(705) and Ser(727) residues in vitro and in vivo. Moreover, GW501516 prevented IL-6-dependent induction of extracellular signal-related kinase (ERK)1/2, a serine-threonine-protein kinase involved in serine STAT3 phosphorylation. Furthermore, in white adipose tissue from PPAR-β/-δ-null mice, STAT3 phosphorylation (Tyr(705) and Ser(727)), STAT3 DNA-binding activity, and SOCS3 protein levels were higher than in wild-type mice. Several steps in STAT3 activation require its association with heat shock protein 90 (Hsp90), which was prevented by GW501516 as revealed in immunoprecipitation studies. Consistent with this finding, the STAT3-Hsp90 association was enhanced in white adipose tissue from PPAR-β/-δ-null mice compared with wild-type mice. CONCLUSIONS Collectively, our findings indicate that PPAR-β/-δ activation prevents IL-6-induced STAT3 activation by inhibiting ERK1/2 and preventing the STAT3-Hsp90 association, an effect that may contribute to the prevention of cytokine-induced insulin resistance in adipocytes.
Resumo:
Islet-brain1 (IB1) or c-Jun NH2 terminal kinase interacting protein-1 (JIP-1), the product of the MAPK8IP1 gene, functions as a neuronal scaffold protein to allow signalling specificity. IB1/JIP-1 interacts with many cellular components including the reelin receptor ApoER2, the low-density lipoprotein receptor-related protein (LRP), kinesin and the Alzheimer's amyloid precursor protein. Coexpression of IB1/JIP-1 with other components of the c-Jun NH2 terminal-kinase (JNK) pathway activates the JNK activity; conversely, selective disruption of IB1/JIP-1 in mice reduces the stress-induced apoptosis of neuronal cells. We therefore hypothesized that IB1/JIP-1 is a risk factor for Alzheimer's disease (AD). By immunocytochemistry, we first colocalized the presence of IB1/JIP-1 with JNK and phosphorylated tau in neurofibrillary tangles. We next identified a -499A>G polymorphism in the 5' regulatory region of the MAPK8IP1 gene. In two separate French populations the -499A>G polymorphism of MAPK8IP1 was not associated with an increased risk to AD. However, when stratified on the +766C>T polymorphism of exon 3 of the LRP gene, the IB1/JIP-1 polymorphism was strongly associated with AD in subjects bearing the CC genotype in the LRP gene. The functional consequences of the -499A>G polymorphism of MAPK8IP1 was investigated in vitro. In neuronal cells, the G allele increased transcriptional activity and was associated with an enhanced binding activity. Taken together, these data indicate that the increased transcriptional activity in the presence of the G allele of MAPK8IP1 is a risk factor to the onset of in patients bearing the CC genotype of the LRP gene.
Resumo:
The hepatitis C virus (HCV) encodes approximately 10 different structural and non-structural proteins, including the envelope glycoprotein 2 (E2). HCV proteins, especially the envelope proteins, bind to cell receptors and can damage tissues. Endothelial inflammation is the most important determinant of fibrosis progression and, consequently, cirrhosis. The aim of this study was to evaluate and compare the inflammatory response of endothelial cells to two recombinant forms of the HCV E2 protein produced in different expression systems (Escherichia coli and Pichia pastoris). We observed the induction of cell death and the production of nitric oxide, hydrogen peroxide, interleukin-8 and vascular endothelial growth factor A in human umbilical vein endothelial cells (HUVECs) stimulated by the two recombinant E2 proteins. The E2-induced apoptosis of HUVECs was confirmed using the molecular marker PARP. The apoptosis rescue observed when the antioxidant N-acetylcysteine was used suggests that reactive oxygen species are involved in E2-induced apoptosis. We propose that these proteins are involved in the chronic inflammation caused by HCV.
Resumo:
Chemotherapeutic drug resistance is one of the major causes for treatment failure in high-risk neuroblastoma (NB), the most common extra cranial solid tumor in children. Poor prognosis is typically associated with MYCN amplification. Here, we utilized a loss-of-function kinome-wide RNA interference screen to identify genes that cause cisplatin sensitization. We identified fibroblast growth factor receptor 2 (FGFR2) as an important determinant of cisplatin resistance. Pharmacological inhibition of FGFR2 confirmed the importance of this kinase in NB chemoresistance. Silencing of FGFR2 sensitized NB cells to cisplatin-induced apoptosis, which was regulated by the downregulation of the anti-apoptotic proteins BCL2 and BCLXL. Mechanistically, FGFR2 was shown to activate protein kinase C-δ to induce BCL2 expression. FGFR2, as well as the ligand fibroblast growth factor-2, were consistently expressed in primary NB and NB cell lines, indicating the presence of an autocrine loop. Expression analysis revealed that FGFR2 correlates with MYCN amplification and with advanced stage disease, demonstrating the clinical relevance of FGFR2 in NB. These findings suggest a novel role for FGFR2 in chemoresistance and provide a rational to combine pharmacological inhibitors against FGFR2 with chemotherapeutic agents for the treatment of NB.
Resumo:
Nitric oxide (NO) plays a relevant role during cell death regulation in tumor cells. The overexpression of nitric oxide synthase type III (NOS-3) induces oxidative and nitrosative stress, p53 and cell death receptor expression and apoptosis in hepatoblastoma cells. S-nitrosylation of cell death receptor modulates apoptosis. Sorafenib is the unique recommended molecular-targeted drug for the treatment of patients with advanced hepatocellular carcinoma. The present study was addressed to elucidate the potential role of NO during Sorafenib-induced cell death in HepG2 cells. We determined the intra- and extracellular NO concentration, cell death receptor expression and their S-nitrosylation modifications, and apoptotic signaling in Sorafenib-treated HepG2 cells. The effect of NO donors on above parameters has also been determined. Sorafenib induced apoptosis in HepG2 cells. However, low concentration of the drug (10nM) increased cell death receptor expression, as well as caspase-8 and -9 activation, but without activation of downstream apoptotic markers. In contrast, Sorafenib (10µM) reduced upstream apoptotic parameters but increased caspase-3 activation and DNA fragmentation in HepG2 cells. The shift of cell death signaling pathway was associated with a reduction of S-nitrosylation of cell death receptors in Sorafenib-treated cells. The administration of NO donors increased S-nitrosylation of cell death receptors and overall induction of cell death markers in control and Sorafenib-treated cells. In conclusion, Sorafenib induced alteration of cell death receptor S-nitrosylation status which may have a relevant repercussion on cell death signaling in hepatoblastoma cells.
Resumo:
Multiple sclerosis is an inflammatory demyelinating disease affecting the central nervous system and considered one of the leading causes of disability in young adults. The precise cause of multiple sclerosis is unknown, although the current evidence points towards a combination of genetic and environmental factors leading to an autoimmune response that promotes neuronal degeneration. In this review, we will describe the association between the immune response and neurodegeneration in multiple sclerosis.