379 resultados para CRYPTOGRAPHY
Resumo:
* Work is partially supported by the Lithuanian State Science and Studies Foundation.
Resumo:
The Self-shrinking p-adic cryptographic generator (SSPCG) is a fast software stream cipher. Improved cryptoanalysis of the SSPCG is introduced. This cryptoanalysis makes more precise the length of the period of the generator. The linear complexity and the cryptography resistance against most recently used attacks are invesigated. Then we discuss how such attacks can be avoided. The results show that the sequence generated by a SSPCG has a large period, large linear complexity and is stable against the cryptographic attacks. This gives the reason to consider the SSPSG as suitable for critical cryptographic applications in stream cipher encryption algorithms.
Resumo:
AMS Subj. Classification: Primary 20N05, Secondary 94A60
Resumo:
2000 Mathematics Subject Classification: 13P05, 14M15, 14M17, 14L30.
Resumo:
We describe an approach for recovering the plaintext in block ciphers having a design structure similar to the Data Encryption Standard but with improperly constructed S-boxes. The experiments with a backtracking search algorithm performing this kind of attack against modified DES/Triple-DES in ECB mode show that the unknown plaintext can be recovered with a small amount of uncertainty and this algorithm is highly efficient both in time and memory costs for plaintext sources with relatively low entropy. Our investigations demonstrate once again that modifications resulting to S-boxes which still satisfy some design criteria may lead to very weak ciphers. ACM Computing Classification System (1998): E.3, I.2.7, I.2.8.
Resumo:
Recent advances in electronic and computer technologies lead to wide-spread deployment of wireless sensor networks (WSNs). WSNs have wide range applications, including military sensing and tracking, environment monitoring, smart environments, etc. Many WSNs have mission-critical tasks, such as military applications. Thus, the security issues in WSNs are kept in the foreground among research areas. Compared with other wireless networks, such as ad hoc, and cellular networks, security in WSNs is more complicated due to the constrained capabilities of sensor nodes and the properties of the deployment, such as large scale, hostile environment, etc. Security issues mainly come from attacks. In general, the attacks in WSNs can be classified as external attacks and internal attacks. In an external attack, the attacking node is not an authorized participant of the sensor network. Cryptography and other security methods can prevent some of external attacks. However, node compromise, the major and unique problem that leads to internal attacks, will eliminate all the efforts to prevent attacks. Knowing the probability of node compromise will help systems to detect and defend against it. Although there are some approaches that can be used to detect and defend against node compromise, few of them have the ability to estimate the probability of node compromise. Hence, we develop basic uniform, basic gradient, intelligent uniform and intelligent gradient models for node compromise distribution in order to adapt to different application environments by using probability theory. These models allow systems to estimate the probability of node compromise. Applying these models in system security designs can improve system security and decrease the overheads nearly in every security area. Moreover, based on these models, we design a novel secure routing algorithm to defend against the routing security issue that comes from the nodes that have already been compromised but have not been detected by the node compromise detecting mechanism. The routing paths in our algorithm detour those nodes which have already been detected as compromised nodes or have larger probabilities of being compromised. Simulation results show that our algorithm is effective to protect routing paths from node compromise whether detected or not.
Resumo:
Recent advances in electronic and computer technologies lead to wide-spread deployment of wireless sensor networks (WSNs). WSNs have wide range applications, including military sensing and tracking, environment monitoring, smart environments, etc. Many WSNs have mission-critical tasks, such as military applications. Thus, the security issues in WSNs are kept in the foreground among research areas. Compared with other wireless networks, such as ad hoc, and cellular networks, security in WSNs is more complicated due to the constrained capabilities of sensor nodes and the properties of the deployment, such as large scale, hostile environment, etc. Security issues mainly come from attacks. In general, the attacks in WSNs can be classified as external attacks and internal attacks. In an external attack, the attacking node is not an authorized participant of the sensor network. Cryptography and other security methods can prevent some of external attacks. However, node compromise, the major and unique problem that leads to internal attacks, will eliminate all the efforts to prevent attacks. Knowing the probability of node compromise will help systems to detect and defend against it. Although there are some approaches that can be used to detect and defend against node compromise, few of them have the ability to estimate the probability of node compromise. Hence, we develop basic uniform, basic gradient, intelligent uniform and intelligent gradient models for node compromise distribution in order to adapt to different application environments by using probability theory. These models allow systems to estimate the probability of node compromise. Applying these models in system security designs can improve system security and decrease the overheads nearly in every security area. Moreover, based on these models, we design a novel secure routing algorithm to defend against the routing security issue that comes from the nodes that have already been compromised but have not been detected by the node compromise detecting mechanism. The routing paths in our algorithm detour those nodes which have already been detected as compromised nodes or have larger probabilities of being compromised. Simulation results show that our algorithm is effective to protect routing paths from node compromise whether detected or not.
Resumo:
Cryptography is the main form to obtain security in any network. Even in networks with great energy consumption restrictions, processing and memory limitations, as the Wireless Sensors Networks (WSN), this is no different. Aiming to improve the cryptography performance, security and the lifetime of these networks, we propose a new cryptographic algorithm developed through the Genetic Programming (GP) techniques. For the development of the cryptographic algorithm’s fitness criteria, established by the genetic GP, nine new cryptographic algorithms were tested: AES, Blowfish, DES, RC6, Skipjack, Twofish, T-DES, XTEA and XXTEA. Starting from these tests, fitness functions was build taking into account the execution time, occupied memory space, maximum deviation, irregular deviation and correlation coefficient. After obtaining the genetic GP, the CRYSEED and CRYSEED2 was created, algorithms for the 8-bits devices, optimized for WSNs, i.e., with low complexity, few memory consumption and good security for sensing and instrumentation applications.
Resumo:
Cryptography is the main form to obtain security in any network. Even in networks with great energy consumption restrictions, processing and memory limitations, as the Wireless Sensors Networks (WSN), this is no different. Aiming to improve the cryptography performance, security and the lifetime of these networks, we propose a new cryptographic algorithm developed through the Genetic Programming (GP) techniques. For the development of the cryptographic algorithm’s fitness criteria, established by the genetic GP, nine new cryptographic algorithms were tested: AES, Blowfish, DES, RC6, Skipjack, Twofish, T-DES, XTEA and XXTEA. Starting from these tests, fitness functions was build taking into account the execution time, occupied memory space, maximum deviation, irregular deviation and correlation coefficient. After obtaining the genetic GP, the CRYSEED and CRYSEED2 was created, algorithms for the 8-bits devices, optimized for WSNs, i.e., with low complexity, few memory consumption and good security for sensing and instrumentation applications.
Resumo:
Combinatorial designs are used for designing key predistribution schemes that are applied to wireless sensor networks in communications. This helps in building a secure channel. Private-key cryptography helps to determine a common key between a pair of nodes in sensor networks. Wireless sensor networks using key predistribution schemes have many useful applications in military and civil operations. When designs are efficiently implemented on sensor networks, blocks with unique keys will be the result. One such implementation is a transversal design which follows the principle of simple key establishment. Analysis of designs and modeling the key schemes are the subjects of this project.
Resumo:
This book constitutes the refereed proceedings of the 14th International Conference on Parallel Problem Solving from Nature, PPSN 2016, held in Edinburgh, UK, in September 2016. The total of 93 revised full papers were carefully reviewed and selected from 224 submissions. The meeting began with four workshops which offered an ideal opportunity to explore specific topics in intelligent transportation Workshop, landscape-aware heuristic search, natural computing in scheduling and timetabling, and advances in multi-modal optimization. PPSN XIV also included sixteen free tutorials to give us all the opportunity to learn about new aspects: gray box optimization in theory; theory of evolutionary computation; graph-based and cartesian genetic programming; theory of parallel evolutionary algorithms; promoting diversity in evolutionary optimization: why and how; evolutionary multi-objective optimization; intelligent systems for smart cities; advances on multi-modal optimization; evolutionary computation in cryptography; evolutionary robotics - a practical guide to experiment with real hardware; evolutionary algorithms and hyper-heuristics; a bridge between optimization over manifolds and evolutionary computation; implementing evolutionary algorithms in the cloud; the attainment function approach to performance evaluation in EMO; runtime analysis of evolutionary algorithms: basic introduction; meta-model assisted (evolutionary) optimization. The papers are organized in topical sections on adaption, self-adaption and parameter tuning; differential evolution and swarm intelligence; dynamic, uncertain and constrained environments; genetic programming; multi-objective, many-objective and multi-level optimization; parallel algorithms and hardware issues; real-word applications and modeling; theory; diversity and landscape analysis.
Resumo:
Abstract There has been a great deal of interest in the area of cyber security in recent years. But what is cyber security exactly? And should society really care about it? We look at some of the challenges of being an academic working in the area of cyber security and explain why cyber security is, to put it rather simply, hard! Speaker Biography Keith Martin Prof. Keith Martin is Professor of Information Security at Royal Holloway, University of London. He received his BSc (Hons) in Mathematics from the University of Glasgow in 1988 and a PhD from Royal Holloway in 1991. Between 1992 and 1996 he held a Research Fellowship at the University of Adelaide, investigating mathematical modelling of cryptographic key distribution problems. In 1996 he joined the COSIC research group of the Katholieke Universiteit Leuven in Belgium, working on security for third generation mobile communications. Keith rejoined Royal Holloway in January 2000, became a Professor in Information Security in 2007 and was Director of the Information Security Group between 2010 and 2015. Keith's research interests range across cyber security, but with a focus on cryptographic applications. He is the author of 'Everyday Cryptography' published by Oxford University Press.
Resumo:
Internet users consume online targeted advertising based on information collected about them and voluntarily share personal information in social networks. Sensor information and data from smart-phones is collected and used by applications, sometimes in unclear ways. As it happens today with smartphones, in the near future sensors will be shipped in all types of connected devices, enabling ubiquitous information gathering from the physical environment, enabling the vision of Ambient Intelligence. The value of gathered data, if not obvious, can be harnessed through data mining techniques and put to use by enabling personalized and tailored services as well as business intelligence practices, fueling the digital economy. However, the ever-expanding information gathering and use undermines the privacy conceptions of the past. Natural social practices of managing privacy in daily relations are overridden by socially-awkward communication tools, service providers struggle with security issues resulting in harmful data leaks, governments use mass surveillance techniques, the incentives of the digital economy threaten consumer privacy, and the advancement of consumergrade data-gathering technology enables new inter-personal abuses. A wide range of fields attempts to address technology-related privacy problems, however they vary immensely in terms of assumptions, scope and approach. Privacy of future use cases is typically handled vertically, instead of building upon previous work that can be re-contextualized, while current privacy problems are typically addressed per type in a more focused way. Because significant effort was required to make sense of the relations and structure of privacy-related work, this thesis attempts to transmit a structured view of it. It is multi-disciplinary - from cryptography to economics, including distributed systems and information theory - and addresses privacy issues of different natures. As existing work is framed and discussed, the contributions to the state-of-theart done in the scope of this thesis are presented. The contributions add to five distinct areas: 1) identity in distributed systems; 2) future context-aware services; 3) event-based context management; 4) low-latency information flow control; 5) high-dimensional dataset anonymity. Finally, having laid out such landscape of the privacy-preserving work, the current and future privacy challenges are discussed, considering not only technical but also socio-economic perspectives.
Resumo:
Secure transmission of bulk data is of interest to many content providers. A commercially-viable distribution of content requires technology to prevent unauthorised access. Encryption tools are powerful, but have a performance cost. Without encryption, intercepted data may be illicitly duplicated and re-sold, or its commercial value diminished because its secrecy is lost. Two technical solutions make it possible to perform bulk transmissions while retaining security without too high a performance overhead. These are: 1. a) hierarchical encryption - the stronger the encryption, the harder it is to break but also the more computationally expensive it is. A hierarchical approach to key exchange means that simple and relatively weak encryption and keys are used to encrypt small chunks of data, for example 10 seconds of video. Each chunk has its own key. New keys for this bottom-level encryption are exchanged using a slightly stronger encryption, for example a whole-video key could govern the exchange of the 10-second chunk keys. At a higher level again, there could be daily or weekly keys, securing the exchange of whole-video keys, and at a yet higher level, a subscriber key could govern the exchange of weekly keys. At higher levels, the encryption becomes stronger but is used less frequently, so that the overall computational cost is minimal. The main observation is that the value of each encrypted item determines the strength of the key used to secure it. 2. b) non-symbolic fragmentation with signal diversity - communications are usually assumed to be sent over a single communications medium, and the data to have been encrypted and/or partitioned in whole-symbol packets. Network and path diversity break up a file or data stream into fragments which are then sent over many different channels, either in the same network or different networks. For example, a message could be transmitted partly over the phone network and partly via satellite. While TCP/IP does a similar thing in sending different packets over different paths, this is done for load-balancing purposes and is invisible to the end application. Network and path diversity deliberately introduce the same principle as a secure communications mechanism - an eavesdropper would need to intercept not just one transmission path but all paths used. Non-symbolic fragmentation of data is also introduced to further confuse any intercepted stream of data. This involves breaking up data into bit strings which are subsequently disordered prior to transmission. Even if all transmissions were intercepted, the cryptanalyst still needs to determine fragment boundaries and correctly order them. These two solutions depart from the usual idea of data encryption. Hierarchical encryption is an extension of the combined encryption of systems such as PGP but with the distinction that the strength of encryption at each level is determined by the "value" of the data being transmitted. Non- symbolic fragmentation suppresses or destroys bit patterns in the transmitted data in what is essentially a bit-level transposition cipher but with unpredictable irregularly-sized fragments. Both technologies have applications outside the commercial and can be used in conjunction with other forms of encryption, being functionally orthogonal.
Resumo:
International audience