550 resultados para CRANIOFACIAL
Resumo:
Structured AbstractObjectivesTo investigate the 3D morphological variations in 169 temporomandibular ioint (TMJ) condyles, using novel imaging statistical modeling approaches.Setting and sample populationThe Department of Orthodontics and Pediatric Dentistry at the University of Michigan. Cone beam CT scans were acquired from 69 subjects with long-term TMJ osteoarthritis (OA, mean age 39.115.7years), 15 subjects at initial consult diagnosis of OA (mean age 44.914.8years), and seven healthy controls (mean age 4312.4years).Materials and methods3D surface models of the condyles were constructed, and homologous correspondent points on each model were established. The statistical framework included Direction-Projection-Permutation (DiProPerm) for testing statistical significance of the differences between healthy controls and the OA groups determined by clinical and radiographic diagnoses.ResultsCondylar morphology in OA and healthy subjects varied widely with categorization from mild to severe bone degeneration or overgrowth. DiProPerm statistics supported a significant difference between the healthy control group and the initial diagnosis of OA group (t=6.6, empirical p-value=0.006) and between healthy and long-term diagnosis of OA group (t=7.2, empirical p-value=0). Compared with healthy controls, the average condyle in OA subjects was significantly smaller in all dimensions, except its anterior surface, even in subjects with initial diagnosis of OA.ConclusionThis new statistical modeling of condylar morphology allows the development of more targeted classifications of this condition than previously possible.
Resumo:
Craniofacial trauma can lead to several complications. The combined fractures of anterior and posterior walls of the frontal bone are almost always followed by lesions in nasofrontal orifices and disruption of nasofrontal ostia or ducts, a significant factor for the development of early and late complications after sinus fractures. This article reports a case of trauma patient, who underwent neurological evaluation and at first showed good general condition. Computed tomography noted fracture of the anterior and posterior walls of the frontal sinus and small foci of pneumocephalus in the cerebral cortex. The patient was monitored periodically and 9 days after trauma showed increased areas of pneumocephalus in prefrontal cortex, cerebrospinal fluid draining, and large dura mater lesion, with signs of necrosis and inflammation (meningitis). The necrotic tissues were removed, and dura mater was repaired through the approximation with resorbable wire polyglactin 910 5-0, oxidized cellulose application, and bonding with human fibrin sealant (fibrinogen, thrombin, and calcium chloride). Sinusectomy, frontal sinus, and nasofrontal duct obliteration with pedicled pericranium flap were performed. Tomographically, a reanatomization was noted in frontal region, and a 12-month follow-up showed no complication. The use of fibrin glue to repair dura mater lacerations, as well as the pedicle pericranium flap for frontal sinus and nasofrontal duct obliteration, is an efficient method for treating fractures of the frontal bone.
Resumo:
The objective of modern odontology is to reconstitute to the patient the comfort, the function, the aesthetic form, the phonetic capability, and normal health. However, the more the patient is toothless, the more this objective becomes difficult inside traditional dentistry. As a result of continuous research of materials and techniques, permissible success is now a reality, whitewashing many challenging clinical situations. Thus, the objective of the article was to present a clinical case where association of the universal cast to long abutment pillars and EsthetiCone were used for aesthetic whitewashing. A man presented to the clinic of the Faculty of Dentistry, Universidade Estadual Paulista. After clinical examination and radiographic evaluation evidenced the necessity of substitution of fixed prostheses (15-25), he was presented with disadaptation and a favorable aesthetic solution. Ahead of the evaluated picture and considering the extension of the toothless space made, it was opted more, to the accomplishment of surgery, the setting of 2 implantations in the region and 2 in each edentate side of the posterior portion of the jaw. On 6 implants and 2 teeth, 10 metal ceramic crowns had been confectioned: 4 of them being joined in the region of the 12 to the 22 and the other 6 as unit crowns in the region of the 13, the 14, the 15, the 23, the 24, and the 25. The carried-through treatment was capable to return the aesthetic form, the function, the phonetic capability, the comfort, and the health of the verbal socket.
Resumo:
New strategies to fulfill craniofacial bone defects have gained attention in recent years due to the morbidity of autologous bone graft harvesting. We aimed to evaluate the in vivo efficacy of bone tissue engineering strategy using mesenchymal stem cells associated with two matrices (bovine bone mineral and α-tricalcium phosphate), compared to an autologous bone transfer. A total of 28 adult, male, non-immunosuppressed Wistar rats underwent a critical-sized osseous defect of 5 mm diameter in the alveolar region. Animals were divided into five groups. Group 1 (n = 7) defects were repaired with autogenous bone grafts; Group 2 (n = 5) defects were repaired with bovine bone mineral free of cells; Group 3 (n = 5) defects were repaired with bovine bone mineral loaded with mesenchymal stem cells; Group 4 (n = 5) defects were repaired with α-tricalcium phosphate free of cells; and Group 5 (n = 6) defects were repaired with α-tricalcium phosphate loaded with mesenchymal stem cells. Groups 2-5 were compared to Group 1, the reference group. Healing response was evaluated by histomorphometry and computerized tomography. Histomorphometrically, Group 1 showed 60.27% ± 16.13% of bone in the defect. Groups 2 and 3 showed 23.02% ± 8.6% (p = 0.01) and 38.35% ± 19.59% (p = 0.06) of bone in the defect, respectively. Groups 4 and 5 showed 51.48% ± 11.7% (p = 0.30) and 61.80% ± 2.14% (p = 0.88) of bone in the defect, respectively. Animals whose bone defects were repaired with α-tricalcium phosphate and mesenchymal stem cells presented the highest bone volume filling the defects; both were not statistically different from autogenous bone.