997 resultados para CPW-fed antenna


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This research published in the foremost international journal in information theory and shows interplay between complex random matrix and multiantenna information theory. Dr T. Ratnarajah is leader in this area of research and his work has been contributed in the development of graduate curricula (course reader) in Massachusetts Institute of Technology (MIT), USA, By Professor Alan Edelman. The course name is "The Mathematics and Applications of Random Matrices", see http://web.mit.edu/18.338/www/projects.html

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A printed rcflectarray antenna, which generates a beam that can be electronically switched from a sum to a difference radiation pattern, is presented. This is achieved by applying a bias voltage of 20 V to one-half of the aperture, which is constructed above a 500 mu m cavity containing liquid crystals. Simulated results are shown to be in good agreement with measurements at X-band.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We show that by introducing a gap at the center of the helical sections (where the current is minimum) of a lambda/2 quadrifilar helix antenna (QHA) and varying the axial length and radial gap between the overlapping volutes, the antenna gives a 28% impedance bandwidth which is nine times the bandwidth of a conventional QHA. A 16% bandwidth with a front to back ratio of >= 14 dB is achievable with 5-14% reduction in the size of the QHA. The structure can yield a monopole radiation pattern suitable for terrestrial applications or a hemispherical pattern suitable for satellite use. The simulation results are validated by measurements at L-band.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The impedance and radiation pattern parameters of a lambda/2 quadrifilar helix antenna (QHA) with turn angles in the range 0 degrees to 235 degrees are analyzed. It is shown that by selecting the helix turn angle to satisfy the minimum bandwidth and beamwidth requirements, an improved electrical performance and a reduction in the physical size of the antenna is obtained. This is demonstrated by comparing the performance of a conventional half turn QHA with structures having a smaller pitch length. The computed results are validated by experimental data at L-band.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction: The quadrifilar helix antenna (QHA) is used widely for terrestrial [1] and space communication systems [2], where it is necessary to generate a circularly polarised cardioid-shaped radiation pattern with a high front-to-back ratio and low cross-polarisation. The radiating structure comprises four helical conductors which are excited in phase quadrature at the feed point, which is usually located at the centre of the top radials. The physical size of the quadrifilar antenna can be reduced by dielectric loading [3] or by meandering the printed linear elements [4]. However, in the former arrangement dielectric absorption reduces the radiation efficiency of the antenna, and the latter technique is not suitable for constructing free standing wire structures, which are normally used for spacecraft payloads in the VHF and UHF bands [2]. This Letter shows that a significant reduction in the axial length of a 1/2 turn half-wavelength QHA can be achieved by modifying the geometry of the helices in the region around the midpoint where a current null exists. Simulated and experimental results at L band are used to show that a size reduction of up to 15% is possible without significantly degrading the pattern shape and the bandwidth.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a new circuit-model approach which can be used to compute the mutual impedance between two dipoles fed at the same feed point. The validity of the method is confirmed by comparison with mutual impedance values obtained when the dipoles are individually excited and orientated at angles between 0degrees and 90degrees. (C) 2004 Wiley Periodicals, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bodyworn antennas are found in a wide range of medical, military and personal communication applications, yet reliable communication from the surface of the human body still presents a range of engineering challenges. At UHF and microwave frequencies, bodyworn antennas can suffer from reduced efficiency due to electromagnetic absorption in tissue, radiation pattern fragmentation and variations in feed-point impedance. The significance and nature of these effects are system specific and depend on the operating frequency, propagation environment and physical constraints on the antenna itself. This paper describes how numerical electromagnetic modelling techniques such as FDTD (finite-difference time-domain) can be used in the design of bodyworn antennas. Examples are presented for 418 MHz, 916 .5 MHz and 2 . 45 GHz, in the context of both biomedical signalling and wireless personal-area networking applications such as the Bluetooth(TM)* wireless technology.