917 resultados para COHERENT


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a comparative study of the influence of dispersion induced phase noise for n-level PSK systems. From the analysis, we conclude that the phase noise influence for classical homodyne/heterodyne PSK systems is entirely determined by the modulation complexity (expressed in terms of constellation diagram) and the analogue demodulation format. On the other hand, the use of digital signal processing (DSP) in homodyne/intradyne systems renders a fiber length dependence originating from the generation of equalization enhanced phase noise. For future high capacity systems, high constellations must be used in order to lower the symbol rate to practically manageable speeds, and this fact puts severe requirements to the signal and local oscillator (LO) linewidths. Our results for the bit-error-rate (BER) floor caused by the phase noise influence in the case of QPSK, 16PSK and 64PSK systems outline tolerance limitations for the LO performance: 5 MHz linewidth (at 3-dB level) for 100 Gbit/s QPSK; 1 MHz for 400 Gbit/s QPSK; 0.1 MHz for 400 Gbit/s 16PSK and 1 Tbit/s 64PSK systems. This defines design constrains for the phase noise impact in distributed-feed-back (DFB) or distributed-Bragg-reflector (DBR) semiconductor lasers, that would allow moving the system capacity from 100 Gbit/s system capacity to 400 Gbit/s in 3 years (1 Tbit/s in 5 years). It is imperative at the same time to increase the analogue to digital conversion (ADC) speed such that the single quadrature symbol rate goes from today's 25 GS/s to 100 GS/s (using two samples per symbol). © 2014 by Walter de Gruyter Berlin/Boston.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The relatively high phase noise of coherent optical systems poses unique challenges for forward error correction (FEC). In this letter, we propose a novel semianalytical method for selecting combinations of interleaver lengths and binary Bose-Chaudhuri-Hocquenghem (BCH) codes that meet a target post-FEC bit error rate (BER). Our method requires only short pre-FEC simulations, based on which we design interleavers and codes analytically. It is applicable to pre-FEC BER ∼10-3, and any post-FEC BER. In addition, we show that there is a tradeoff between code overhead and interleaver delay. Finally, for a target of 10-5, numerical simulations show that interleaver-code combinations selected using our method have post-FEC BER around 2× target. The target BER is achieved with 0.1 dB extra signal-to-noise ratio.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new approach is proposed for the quantum mechanics of guiding center motion in strong magnetic field. This is achieved by use of the coherent state path integral for the coupled systems of the cyclotron and the guiding center motion. We are specifically concerned with the effective action for the guiding center degree, which can be used to get the Bohr- Sommerfeld quantization scheme. The quantization rule is similar to the one for the vortex motion as a dynamics of point particles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Forward error correction (FEC) plays a vital role in coherent optical systems employing multi-level modulation. However, much of coding theory assumes that additive white Gaussian noise (AWGN) is dominant, whereas coherent optical systems have significant phase noise (PN) in addition to AWGN. This changes the error statistics and impacts FEC performance. In this paper, we propose a novel semianalytical method for dimensioning binary Bose-Chaudhuri-Hocquenghem (BCH) codes for systems with PN. Our method involves extracting statistics from pre-FEC bit error rate (BER) simulations. We use these statistics to parameterize a bivariate binomial model that describes the distribution of bit errors. In this way, we relate pre-FEC statistics to post-FEC BER and BCH codes. Our method is applicable to pre-FEC BER around 10-3 and any post-FEC BER. Using numerical simulations, we evaluate the accuracy of our approach for a target post-FEC BER of 10-5. Codes dimensioned with our bivariate binomial model meet the target within 0.2-dB signal-to-noise ratio.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a study of the influence of dispersion induced phase noise for CO-OFDM systems using FFT multiplexing/IFFT demultiplexing techniques (software based). The software based system provides a method for a rigorous evaluation of the phase noise variance caused by Common Phase Error (CPE) and Inter-Carrier Interference (ICI) including - for the first time to our knowledge - in explicit form the effect of equalization enhanced phase noise (EEPN). This, in turns, leads to an analytic BER specification. Numerical results focus on a CO-OFDM system with 10-25 GS/s QPSK channel modulation. A worst case constellation configuration is identified for the phase noise influence and the resulting BER is compared to the BER of a conventional single channel QPSK system with the same capacity as the CO-OFDM implementation. Results are evaluated as a function of transmission distance. For both types of systems, the phase noise variance increases significantly with increasing transmission distance. For a total capacity of 400 (1000) Gbit/s, the transmission distance to have the BER < 10-2 for the worst case CO-OFDM design is less than 800 and 460 km, respectively, whereas for a single channel QPSK system it is less than 1400 and 560 km.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the impact of longitudinal signal power profile on the transmission performance of coherently-detected 112 Gb/s m-ary polarization multiplexed quadrature amplitude modulation system after compensation of deterministic nonlinear fibre impairments. Performance improvements up to 0.6 dB (Q(eff)) are reported for a non-uniform transmission link power profile. Further investigation reveals that the evolution of the transmission performance with power profile management is fully consistent with the parametric amplification of the amplified spontaneous emission by the signal through four-wave mixing. In particular, for a non-dispersion managed system, a single-step increment of 4 dB in the amplifier gain, with respect to a uniform gain profile, at similar to 2/3(rd) of the total reach considerably improves the transmission performance for all the formats studied. In contrary a negative-step profile, emulating a failure (gain decrease or loss increase), significantly degrades the bit-error rate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With the rebirth of coherent detection, various algorithms have come forth to alleviate phase noise, one of the main impairments for coherent receivers. These algorithms provide stable compensation, however they limit the DSP. With this key issue in mind, Fabry Perot filter based self coherent optical OFDM was analyzed which does not require phase noise compensation reducing the complexity in DSP at low OSNR. However, the performance of such a receiver is limited due to ASE noise at the carrier wavelength, especially since an optical amplifier is typically employed with the filter to ensure sufficient carrier power. Subsequently, the use of an injection-locked laser (ILL) to retrieve the frequency and phase information from the extracted carrier without the use of an amplifier was recently proposed. In ILL based system, an optical carrier is sent along with the OFDM signal in the transmitter. At the receiver, the carrier is extracted from the OFDM signal using a Fabry-Perot tunable filter and an ILL is used to significantly amplify the carrier and reduce intensity and phase noise. In contrast to CO-OFDM, such a system supports low-cost broad linewidth lasers and benefits with lower complexity in the DSP as no carrier frequency estimation and correction along with phase noise compensation is required.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A bidirectional nonreciprocal wavelength-interleaving filter based on an optically coherent high birefringence fiber transversal filter structure is demonstrated. Stable, low loss, low dispersion, and high isolation operation is demonstrated with reconfigurable transfer characteristics for interleaved channel spacing of 0.8 nm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a performance evaluation of a non-conventional approach to implement phase noise tolerant optical systems with multilevel modulation formats. The performance of normalized Viterbi-Viterbi carrier phase estimation (V-V CPE) is investigated in detail for circular m-level quadrature amplitude modulation (C-mQAM) signals. The intrinsic property of C-mQAM constellation points with a uniform phase separation allows a straightforward employment of V-V CPE without the need to adapt constellation. Compared with conventional feed-forward CPE for square QAM signals, the simulated results show an enhanced tolerance of linewidth symbol duration product (ΔvTs) at a low sensitivity penalty by using feed-forward CPE structure with C-mQAM. This scheme can be easily upgraded to higher order modulations without inducing considerable complexity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose an artificial neural network (ANN) equalizer for transmission performance enhancement of coherent optical OFDM (C-OOFDM) signals. The ANN equalizer showed more efficiency in combating both chromatic dispersion (CD) and single-mode fibre (SMF)-induced non-linearities compared to the least mean square (LMS). The equalizer can offer a 1.5 dB improvement in optical signal-to-noise ratio (OSNR) compared to LMS algorithm for 40 Gbit/s C-OOFDM signals when considering only CD. It is also revealed that ANN can double the transmission distance up to 320 km of SMF compared to the case of LMS, providing a nonlinearity tolerance improvement of ∼0.7 dB OSNR.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We experimentally characterize the distributed Raman amplification induced amplitude and phase impairments and evaluate the performance dependence of unrepeated 28 Gbaud 16QAM coherent transmissions over standard single mode fiber.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new generation of high-capacity WDM systems with extremely robust performance has been enabled by coherent transmission and digital signal processing. To facilitate widespread deployment of this technology, particularly in the metro space, new photonic components and subsystems are being developed to support cost-effective, compact, and scalable transceivers. We briefly review the recent progress in InP-based photonic components, and report numerical simulation results of an InP-based transceiver comprising a dual-polarization I/Q modulator and a commercial DSP ASIC. Predicted performance penalties due to the nonlinear response, lower bandwidth, and finite extinction ratio of these transceivers are less than 1 and 2 dB for 100-G PM-QPSK and 200-G PM-16QAM, respectively. Using the well-established Gaussian-Noise model, estimated system reach of 100-G PM-QPSK is greater than 600 km for typical ROADM-based metro-regional systems with internode losses up to 20 dB. © 1983-2012 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Anterior segment optical coherent tomography (AS-OCT, Visante; Zeiss) is used to examine meridional variation in anterior scleral thickness (AST) and its association with refractive error, ethnicity and gender. Scleral cross-sections of 74 individuals (28 males; 46 females; aged between 18-40 years (27.7±5.3)) were sampled twice in random order in 8 meridians: [superior (S), inferior (I), nasal (N), temporal (T), superior-temporal (ST), superior-nasal (SN), inferior-temporal (IT) and inferior-nasal (IN)]. AST was measured in 1mm anterior-toposterior increments (designated the A-P distance) from the scleral spur (SS) over a 6mm distance. Axial length and refractive error were measured with a Zeiss IOLMaster biometer and an open-view binocular Shin-Nippon autorefractor. Intra- And inter-observer variability of AST was assessed for each of the 8 meridians. Mixed repeated measures ANOVAs tested meridional and A-P distance differences in AST with refractive error, gender and ethnicity. Only right eye data were analysed. AST (mean±SD) across all meridians and A-P distances was 725±46μm. Meridian SN was the thinnest (662±57μm) and I the thickest (806 ±60μm). Significant differences were found between all meridians (p<0.001), except S:ST, IT:IN, IT:N and IN:N. Significant differences between A-P distances were found except between SS and 6 mm and between 2 and 4mm. AST measurements at 1mm (682±48 μm) were the thinnest and at 6mm (818±49 μm) the thickest (p<0.001); a significant interaction occurred between meridians and A-P distances (p<0.001). AST was significantly greater (p<0.001) in male subjects but no significant differences were found between refractive error or ethnicity. Significant variations in AST occur with regard to meridian and distance from the SS and may have utility in selecting optimum sites for pharmaceutical or surgical intervention.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We show, by numerical simulation, that the impact of tight optical filtering in high speed coherent 50% RZ-BPSK systems can be greatly reduced by offsetting the filter (equivalent to laser detuning). We show that by offsetting the filter by up to half the filter bandwidth, that system performance is improved by > 2.5 dB in the calculated 'Q' for an OSNR of 12 dB. © 2013 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A modern electronic nonlinearity equalizer (NLE) based on inverse Volterra series transfer function (IVSTF) with reduced complexity is applied on coherent optical orthogonal frequency-division multiplexing (CO-OFDM) signals for next-generation long- and ultra-long-haul applications. The OFDM inter-subcarrier crosstalk effects are explored thoroughly using the IVSTF-NLE and compared with the case of linear equalization (LE) for transmission distances of up to 7000 km. © 2013 IEEE.