1000 resultados para CNPQ::ENGENHARIAS::ENGENHARIA DE MATERIAIS E METALURGICA
Resumo:
This thesis has as objective presents a methodology to evaluate the behavior of the corrosion inhibitors sodium nitrite, sodium dichromate and sodium molybdate, as well as your mixture, the corrosion process for the built-in steel in the reinforced concrete, through different techniques electrochemical, as well as the mechanical properties of that concrete non conventional. The addition of the inhibitors was studied in the concrete in the proportions from 0.5 to 3.5 % regarding the cement mass, isolated or in the mixture, with concrete mixture proportions of 1.0:1.5:2.5 (cement, fine aggregate and coarse aggregate), superplasticizers 2.0 % and 0.40 water/cement ratio. In the modified concrete resistance rehearsals they were accomplished to the compression, consistence and the absorption of water, while to analyze the built-in steel in the concrete the rehearsals of polarization curves they were made. They were also execute, rehearsals of corrosion potential and polarization resistance with intention of diagnose the beginning of the corrosion of the armors inserted in body-of-proof submitted to an accelerated exhibition in immersion cycle and drying to the air. It was concluded, that among the studied inhibitors sodium nitrite , in the proportion of 2.0 % in relation to the mass of the cement, presented the best capacity of protection of the steel through all the studied techniques and that the methodology and the monitoring techniques used in this work, they were shown appropriate to evaluate the behavior and the efficiency of the inhibitors
Resumo:
Heating rate is one of the main variables that determine a fire cycle. In industrial processes that use high temperatures, greater fire great can reduce the cost of production and increase productivity. The use of faster and more efficient fire cycles has been little investigated by the structural ceramic industry in Brazil. However, one of the possibilities that aims at modernizing the sector is the use of roller kilns and the inclusion of natural gas as fuel. Thus, the purpose of this study is to investigate the effect of heating rate on the technological properties of structural ceramic products. Clay raw materials from the main ceramic industries in the state of Rio Grande do Norte were characterized. Some of the raw materials characterized were formulated to obtain the best physical and mechanical properties. Next, raw materials and formulations were selected to study the influence of heating rate on the final properties of the ceramic materials. The samples were shaped by pressing and extrusion and submitted to rates of 1 °C/min, 10 °C/min and 20 °C/min, with final temperatures of 850 °C, 950 °C and 1050 °C. Discontinuous cycles with rates of 10 °C/min or 15 °C/min up to 600 °C and a rate of 20 °C/min up to final temperature were also investigated. Technological properties were determined for all the samples and microstructural analysis was carried out under a number of fire conditions. Results indicate that faster and more efficient fire cycles than those currently in practice could be used, limiting only some clay doughs to certain fire conditions. The best results were obtained for the samples submitted to slow cycles up to 600 °C and fast fire sinterization up to 950 °C. This paper presents for the first time the use of a fast fire rate for raw materials and clay formulations and seeks to determine ideal dough and processing conditions for using shorter fire times, thus enabling the use of roller kilns and natural gas in structural ceramic industries
Resumo:
In this work was used a plasma torch of non transferred arc with argon as work gas, using a power supply with maximum DC current of 250 A and voltage of 30 V to activate the plasma and keep it switched on. The flame temperature was characterized by optical emission spectroscopy, through Boltzmann-plot-method. The torch has been used like igniter in the aluminothermic reduction of the mixture tantalum oxide and aluminum, seeking to obtain metallic tantalum. In heating of the reagents only one particle will be considered to study interactions between plasma-particle, seeking to determinate its fusion and residence time. The early powders were characterized by laser granulometry, scanning electron microscopy (SEM) and X-ray diffraction analysis. The final product of this reaction was characterized by SEM and X-ray diffraction. Crystallite size was calculated by the Scherrer equation and microdeformation was determined using Willamsom-Hall graph. With Rietveld method was possible to quantify the percentile in weight of the products obtained in the aluminothermic reaction. Semi-quantitative chemical analysis (EDS) confirmed the presence of metallic tantalum and Al2O3 as products of the reduction. As was waited the particle size of the metallic tantalum produced, presents values in nanometric scale due the short cooling time of those particles during the process
Resumo:
In the present work it was developed originals alternatives of enveronmentally safe and economically viable destination of thermoset plastic residue from a button factory, which at presnte stores such residue tempor and in a way that is inconvenient to the atmosphere, a waiting safe solutions. As the residue is not recycleab and its burning leberates strongly aggressive gases, safe alternatives were researched. Inicially, ghe residue in incineration was performed in cement ovens with precise control ofe emission of gases, but it was proved inviable due to its low calorific power, as well as the liberation of free lead in the ashes. An original and feasible option was the residue confinemente in soil-ciment blocks, lohich resulted in blocks highly resistant to simple compression with structural block, and also a significant increase in thermal resistence. Was got up other options of original and important composites as: making of blocks for pré-moulded flagstone, internal coating of walls with plaster being obtained good texture results, replenish of ceramic blocks and blocks with cement, also implying in increase of thermal resistance. Besides these original and scientific contributions, the it was technologically contribution of defreadation with suggestions of the material using torch of thermal plasm; for this was projected, built, characterized and tested a torch to it shapes it being obtained exciting results for the development of this technology come back for ending destruction from all the types of inconvenient garbage to the atmosphere
Resumo:
Rio Grande do Norte State stands out as one great producer of structural clay of the brazilian northeastern. The Valley Assu ceramic tiles production stands out obtained from ilitics ball clays that abound in the region under study. Ceramics formulation and the design of experiments with mixture approach, has been applied for researchers, come as an important aid to decrease the number of experiments necessary to the optimization. In this context, the objective of this work is to evaluate the effects of the formulation, temperature and heating rate in the physical-mechanical properties of the red ceramic body used for roofing tile fabrication of the Valley Assu, using design of mixture experiments. Four clays samples used in two ceramics industry of the region were use as raw material and characterized by X-ray diffraction, chemical composition, differential thermal analysis (DTA), thermogravimetric analysis (TGA), particle size distribution analysis and plasticity techniques. Afterwards, they were defined initial molded bodies and made specimens were then prepared by uniaxial pressing at 25 MPa before firing at 850, 950 and 1050 ºC in a laboratory furnace, with heating rate in the proportions of 5, 10 e 15 ºC/min. The following tecnologicals properties were evaluated: linear firing shrinkage, water absorption and flexural strength. Results show that the temperature 1050 ºC and heating rate of 5 ºC/min was the best condition, therefore presented significance in all physical-mechanical properties. The model was accepted as valid based of the production of three new formulations with fractions mass diferents of the initial molded bodies and heated with temperature at 1050 ºC and heating rate of 5 ºC/min. Considering the formulation, temperature and heating rate as variables of the equations, another model was suggested, where from the aplication of design of experiments with mixtures was possible to get a best formulation, whose experimental error is the minor in relation to the too much formulations
Resumo:
The construction industry is one of the largest consumers of natural raw materials, and concrete is considered today the most used material wide. This accentuated consumption of natural resources has generated concern with the preservation of the environment, and has motivated various studies related to the use of resid ues, which can partially or entirely substitute, with satisfactory performance, some materials such as the aggregate, and in so doing, decrease the impact on the environment caused by the produced residues. Research has been done to better understand and improve the microstructure of concrete, as well as to understand the mechanism of corrosion in reinforced steel. In this context, this work was developed aiming at discovering the influence of the substitution of natural sand by artificial sand, with rega rd to mechanical resistance, microstructure, and durability. To obtain the electrochemical parameters, an adaptation was made to the galvanostatic electrochemical method to study the corrosion in reinforced steel. Concretes of categories 20 MPa and 40 MPa were produced, containing natural sand, and concretes of the same categories were produced with artificial sand substituting the natural sand, and with the addition of sodium nitrate and sodium chloride. Due to the use of rock dust reject (artificial sand), an evaluation was made of its environmental risk. The results indicate that the concretes of category 20 MPa present a better performance than the concrete made with natural sand, thus making it a viable substitute. For the category 40 MPa, the better performance is from the concrete containing natural sand. The adaptation of the galvanostatic electrochemical technique to the study of the corrosion of reinforced steel within concrete proved to be valid for obtaining electrochemical parameters with a high degree of reliability, considering the number of degrees of freedom
Resumo:
Ceramic composites produced with polymerics precursors have been studied for many years, due to the facility of obtaining a complex shape, at low temperature and reduces cost. The main objective of this work is to study the process of sintering of composites of ceramic base consisting of Al2O3 and silicates, reinforced for NbC, through the technique of processing AFCOP, as well as the influence of the addition of LZSA, ICZ and Al as materials infiltration in the physical and mechanical properties of the ceramic composite. Were produced ceramic matrix composites based SiCxOy e Al2O3 reinforced with NbC, by hidrosilylation reaction between D4Vi and D1107 mixtured with Al2O3 as inert filler, Nb and Al as reactive filler. The specimens produced were pyrolised at 1200, 1250 and 1400°C and infiltred with Al, ICZ and LZSA, respectively. Density, porosity, flexural mechanical strength and fracture surface by scanning electron microscopy were evaluated. The microstructure of the composites was investigated by X-ray diffraction to identify the presence of crystalline phases. The composites presented apparent porosity varying of 31 up to 49% and mechanical flexural strength of 14 up to 34 MPa. The infiltration process improviment of the densification and reduction of the porosity, as well as increased the values of mechanical flexural strength. The obtained phases had been identified as being Al3Nb, NbSi2, Nb5S3, Nb3Si and NbC. The samples that were submitted the infiltration process presented a layer next surface with reduced pores number in relation to the total volume
Resumo:
The resistance of aluminum and their alloys, to the corrosion phenomenon, in aqueous solutions, is a result of the oxide layer formed. However, the corrosion process in the aluminum alloy is associated with the presence a second phase of particles or the presence of chloride ions which promote the disruption of the oxide layer located producing the corrosion process. On the other hand, the term water produced is used to describe the water after the separation of the oil and gas in API separators. The volumes of produced water arrive around 5 more times to the volume of oil produced. The greatest feature of the water is the presence of numerous pollutants. Due to the increased volume of waste around the world in the current decade, the outcome and the effect of the discharge of produced water on the environment has recently become an important issue of environmental concern where numerous treatments are aimed at reducing these contaminants before disposal. Then, this study aims to investigate the electrochemical corrosion behavior of aluminum alloy 6060 in presence of water produced and the influence of organic components as well as chloride ions, by using the electrochemical techniques of linear polarization. The modification of the passive layer and the likely breakpoints were observed by atomic force microscopy (AFM). In the pit formation potential around -0.4 to -0.8 V/EAg/AgCl was observed that the diffusion of chloride ions occurs via the layer formed with the probable formation of pits. Whereas, at temperatures above 65 °C, it was observed that the range of potential for thepit formation was -0.4 to -0.5 V/EAg/AgCl. In all reactions, the concentration of Al(OH)3 in the form of a gel was observed
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Resumo:
Magnetic ceramics have been widely investigated, especially with respect to intrinsic and extrinsic characteristics of these materials. Among the magnetic ceramic materials of technological interest, there are the ferrites. On the other hand, the thermal treatment of ceramic materials by microwave energy has offered various advantages such as: optimization of production processes, high heat control, low consumption of time and energy among others. In this work were synthesized powders of Ni-Zn ferrite with compositions Ni1- xZnxFe2O4 (0.25 ≤ x ≤ 0.75 mols) by the polymeric precursor route in two heat treatment conditions, conventional oven and microwave energy at 500, 650, 800 and 950°C and its structural, and morphological imaging. The materials were characterized by thermal analysis (TG/ DSC), X-ray diffraction (XRD), absorption spectroscopy in the infrared (FTIR), scanning electron microscopy (SEM), X-ray spectroscopy and energy dispersive (EDS) and vibrating sample magnetometry (VSM). The results of X-ray diffraction confirmed the formation of ferrite with spinel-type cubic structure. The extrinsic characteristics of the powders obtained by microwave calcination and influence significantly the magnetic behavior of ferrites, showing particles ferrimagnéticas characterized as soft magnetic materials (soft), is of great technological interest. The results obtained led the potential application of microwave energy for calcining powders of Ni-Zn ferrite
Resumo:
Magnetic ceramics have been widely investigated, especially with respect to intrinsic and extrinsic characteristics of these materials. Among the magnetic ceramic materials of technological interest, there are the ferrites. On the other hand, the thermal treatment of ceramic materials by microwave energy has offered various advantages such as: optimization of production processes, high heat control, low consumption of time and energy among others. In this work were synthesized powders of Ni-Zn ferrite with compositions Ni1- xZnxFe2O4 (0.25 ≤ x ≤ 0.75 mols) by the polymeric precursor route in two heat treatment conditions, conventional oven and microwave energy at 500, 650, 800 and 950°C and its structural, and morphological imaging. The materials were characterized by thermal analysis (TG/ DSC), X-ray diffraction (XRD), absorption spectroscopy in the infrared (FTIR), scanning electron microscopy (SEM), X-ray spectroscopy and energy dispersive (EDS) and vibrating sample magnetometry (VSM). The results of X-ray diffraction confirmed the formation of ferrite with spinel-type cubic structure. The extrinsic characteristics of the powders obtained by microwave calcination and influence significantly the magnetic behavior of ferrites, showing particles ferrimagnéticas characterized as soft magnetic materials (soft), is of great technological interest. The results obtained led the potential application of microwave energy for calcining powders of Ni-Zn ferrite
Resumo:
The fast pyrolysis of lignocellulosic biomass is a thermochemical conversion process for production energy which have been very atratactive due to energetic use of its products: gas (CO, CO2, H2, CH4, etc.), liquid (bio-oil) and charcoal. The bio-oil is the main product of fast pyrolysis, and its final composition and characteristics is intrinsically related to quality of biomass (ash disposal, moisture, content of cellulose, hemicellulose and lignin) and efficiency removal of oxygen compounds that cause undesirable features such as increased viscosity, instability, corrosiveness and low calorific value. The oxygenates are originated in the conventional process of biomass pyrolysis, where the use of solid catalysts allows minimization of these products by improving the bio-oil quality. The present study aims to evaluate the products of catalytic pyrolysis of elephant grass (Pennisetum purpureum Schum) using solid catalysts as tungsten oxides, supported or not in mesoporous materials like MCM-41, derived silica from rice husk ash, aimed to reduce oxygenates produced in pyrolysis. The biomasss treatment by washing with heated water (CEL) or washing with acid solution (CELix) and application of tungsten catalysts on vapors from the pyrolysis process was designed to improve the pyrolysis products quality. Conventional and catalytic pyrolysis of biomass was performed in a micro-pyrolyzer, Py-5200, coupled to GC/MS. The synthesized catalysts were characterized by X ray diffraction, infrared spectroscopy, X ray fluorescence, temperature programmed reduction and thermogravimetric analysis. Kinetic studies applying the Flynn and Wall model were performed in order to evaluate the apparent activation energy of holoceluloce thermal decomposition on samples elephant grass (CE, CEL and CELix). The results show the effectiveness of the treatment process, reducing the ash content, and were also observed decrease in the apparent activation energy of these samples. The catalytic pyrolysis process converted most of the oxygenate componds in aromatics such as benzene, toluene, ethylbenzene, etc
Resumo:
Aiming to reduce and reuse waste oil from oily sludge generated in large volumes by the oil industry, types of nanostructured materials Al-MCM-41 and Al-SBA-15, with ratios of Si / Al = 50, were synthesized , and calcined solids used as catalysts in the degradation of oily sludge thermocatalytic oil from oilfield Canto do Amaro, in the state of Rio Grande do Norte. Samples of nanostructured materials were characterized by thermogravimetric analysis (TG / DTG), X-ray diffraction (XRD), scanning electron microscopy (SEM), absorption spectroscopy in the infrared Fourier transform (FT-IR) and adsorption nitrogen (BET). The characterization showed that the synthesized materials resulted in a catalyst nanostructure, and ordered pore diameter and surface area according to existing literature. The oily sludge sample was characterized by determining the API gravity and sulfur content and SARA analysis (saturates, aromatics, resins and asphaltenes). The results showed a material equivalent to the average oil with API gravity of 26.1, a low sulfur content and considerable amount of resins and asphaltenes, presented above in the literature. The thermal and catalytic degradation of the oily sludge oil was performed from room temperature to 870 ° C in the ratios of heating of 5, 10 and 20 ° C min-1. The curves generated by TG / DTG showed a more accelerated degradation of oily sludge when it introduced the nanostructured materials. These results were confirmed by activation energy calculated by the method of Flynn-Wall, in the presence of catalysts reduced energy, in particular in the range of cracking, showing the process efficiency, mainly for extraction of lightweight materials of composition of oily sludge, such as diesel and gasoline
Resumo:
In general, the materials used as substrates in the project of microstrip antennas are: isotropic, anisotropic dielectrics and ferrimagnetic materials (magnetic anisotropy). The use of ferrimagnetic materials as substrates in microstrip patch antennas has been concentrated on the analysis of antennas with circular and rectangular patches. However, a new class of materials, called metamaterials, has been currently the focus of a great deal of interest. These materials exhibit bianisotropic characteristics, with permittivity and permeability tensors. The main objective of this work is to develop a theoretical and numerical analysis for the radiation characteristics of annular ring microstrip antennas, using ferrites and metamaterials as substrates. The full wave analysis is performed in the Hankel transform domain through the application of the Hertz vector potentials. Considering the definition of the Hertz potentials and imposing the boundary conditions, the dyadic Green s function components are obtained relating the surface current density components at the plane of the patch to the electric field tangential components. Then, Galerkin s method is used to obtain a system of matrix equations, whose solution gives the antenna resonant frequency. From this modeling, it is possible to obtain numerical results for the resonant frequency, radiation pattern, return loss, and antenna bandwidth as a function of the annular ring physical parameters, for different configurations and substrates. The theoretical analysis was developed for annular ring microstrip antennas on a double ferrimagnetic/isotropic dielectric substrate or metamaterial/isotropic dielectric substrate. Also, the analysis for annular ring microstrip antennas on a single ferrimagnetic or metamaterial layer and for suspended antennas can be performed as particular cases
Resumo:
Recently, planar antennas have been studied due to their characteristics as well as the advantages that they offers when compared with another types of antennas. In the mobile communications area, the need for this kind of antennas have became each time bigger due to the intense increase of the mobile communications this sector. That needs of antennas which operate in multifrequency and wide bandwidth. The microstrip antennas presents narrow bandwidth due the loss in the dielectric generated by radiation. Another limitation is the radiation pattern degradation due the generation of surface waves in the substrate. In this work some used techniques to minimize the disadvantages (previously mentioned) of the use of microstrip antennas are presented, those are: substrates with PBG material - Photonic Bandgap, multilayer antennas and with stacked patches. The developed analysis in this work used the TTL - Transverse Transmission Line method in the domain of Fourier transform, that uses a component of propagation in the y direction (transverse to the direction real of propagation z), treating the general equations of electric and magnetic field as functions of Ey and Hy. One of the advantages of this method is the simplification of the field equations. therefore the amount of equations lesser must the fields in directions x and z be in function of components Ey and Hy. It will be presented an brief study of the main theories that explain the superconductivity phenomenon. The BCS theory. London Equations and Two Fluids model will be the theories that will give support the application of the superconductors in the microfita antennas. The inclusion of the superconductor patch is made using the resistive complex contour condition. This work has as objective the application of the TTL method to microstrip structures with single and multilayers of rectangular patches, to obtaining the resonance frequency and radiation pattern of each structure