964 resultados para CHEMORECEPTOR INPUTS
Resumo:
An event sequence recorder is a specialized piece of equipment that accepts inputs from switches and contactors, and prints the sequence in which they operate. This paper describes an event sequence recorder based on an Intel 8085 microprocessor. It scans the inputs every millisecond and prints in a compact form the channel number, type of event (normal or abnormal) and time of occurrence. It also communicates these events over an RS232C link to a remote computer. A realtime calendar/clock is included. The system described has been designed for continuous operation in process plants, power stations etc. The system has been tested and found to be working satisfactorily.
Resumo:
Various reasons, such as ethical issues in maintaining blood resources, growing costs, and strict requirements for safe blood, have increased the pressure for efficient use of resources in blood banking. The competence of blood establishments can be characterized by their ability to predict the volume of blood collection to be able to provide cellular blood components in a timely manner as dictated by hospital demand. The stochastically varying clinical need for platelets (PLTs) sets a specific challenge for balancing supply with requests. Labour has been proven a primary cost-driver and should be managed efficiently. International comparisons of blood banking could recognize inefficiencies and allow reallocation of resources. Seventeen blood centres from 10 countries in continental Europe, Great Britain, and Scandinavia participated in this study. The centres were national institutes (5), parts of the local Red Cross organisation (5), or integrated into university hospitals (7). This study focused on the departments of blood component preparation of the centres. The data were obtained retrospectively by computerized questionnaires completed via Internet for the years 2000-2002. The data were used in four original articles (numbered I through IV) that form the basis of this thesis. Non-parametric data envelopment analysis (DEA, II-IV) was applied to evaluate and compare the relative efficiency of blood component preparation. Several models were created using different input and output combinations. The focus of comparisons was on the technical efficiency (II-III) and the labour efficiency (I, IV). An empirical cost model was tested to evaluate the cost efficiency (IV). Purchasing power parities (PPP, IV) were used to adjust the costs of the working hours and to make the costs comparable among countries. The total annual number of whole blood (WB) collections varied from 8,880 to 290,352 in the centres (I). Significant variation was also observed in the annual volume of produced red blood cells (RBCs) and PLTs. The annual number of PLTs produced by any method varied from 2,788 to 104,622 units. In 2002, 73% of all PLTs were produced by the buffy coat (BC) method, 23% by aphaeresis and 4% by the platelet-rich plasma (PRP) method. The annual discard rate of PLTs varied from 3.9% to 31%. The mean discard rate (13%) remained in the same range throughout the study period and demonstrated similar levels and variation in 2003-2004 according to a specific follow-up question (14%, range 3.8%-24%). The annual PLT discard rates were, to some extent, associated with production volumes. The mean RBC discard rate was 4.5% (range 0.2%-7.7%). Technical efficiency showed marked variation (median 60%, range 41%-100%) among the centres (II). Compared to the efficient departments, the inefficient departments used excess labour resources (and probably) production equipment to produce RBCs and PLTs. Technical efficiency tended to be higher when the (theoretical) proportion of lost WB collections (total RBC+PLT loss) from all collections was low (III). The labour efficiency varied remarkably, from 25% to 100% (median 47%) when working hours were the only input (IV). Using the estimated total costs as the input (cost efficiency) revealed an even greater variation (13%-100%) and overall lower efficiency level compared to labour only as the input. In cost efficiency only, the savings potential (observed inefficiency) was more than 50% in 10 departments, whereas labour and cost savings potentials were both more than 50% in six departments. The association between department size and efficiency (scale efficiency) could not be verified statistically in the small sample. In conclusion, international evaluation of the technical efficiency in component preparation departments revealed remarkable variation. A suboptimal combination of manpower and production output levels was the major cause of inefficiency, and the efficiency did not directly relate to production volume. Evaluation of the reasons for discarding components may offer a novel approach to study efficiency. DEA was proven applicable in analyses including various factors as inputs and outputs. This study suggests that analytical models can be developed to serve as indicators of technical efficiency and promote improvements in the management of limited resources. The work also demonstrates the importance of integrating efficiency analysis into international comparisons of blood banking.
Resumo:
Objective To understand differences in the managerial ethical decision-making styles of Australian healthcare managers through the exploratory use of the Managerial Ethical Profiles (MEP) Scale. Background Healthcare managers (doctors, nurses, allied health practitioners and non-clinically trained professionals) are faced with a raft of variables when making decisions within the workplace. In the absence of clear protocols and policies healthcare managers rely on a range of personal experiences, personal ethical philosophies, personal factors and organizational factors to arrive at a decision. Understanding the dominant approaches to managerial ethical decision-making, particularly for clinically trained healthcare managers, is a fundamental step in both increasing awareness of the importance of how managers make decisions, but also as a basis for ongoing development of healthcare managers. Design Cross-sectional. Methods The study adopts a taxonomic approach that simultaneously considers multiple ethical factors that potentially influence managerial ethical decision-making. These factors are used as inputs into cluster analysis to identify distinct patterns of influence on managerial ethical decision-making. Results Data analysis from the participants (n=441) showed a similar spread of the five managerial ethical profiles (Knights, Guardian Angels, Duty Followers, Defenders and Chameleons) across clinically trained and non-clinically trained healthcare managers. There was no substantial statistical difference between the two manager types (clinical and non-clinical) across the five profiles. Conclusion This paper demonstrated that managers that came from clinical backgrounds have similar ethical decision-making profiles to non-clinically trained managers. This is an important finding in terms of manager development and how organisations understand the various approaches of managerial decision-making across the different ethical profiles.
Resumo:
This paper attempts to evaluate the energy inputs needed to produce rural buildings. Based on a survey, a comparison is carried out of traditional and innovative technologies with reference to their energy consumption. Some basic data regarding energies in transportation are also presented. The implications of this analysis for development objectives is discussed.
Resumo:
This paper examines the idea that plasticity in farm management introduces resilience to change and allows farm businesses to perform when operating in highly variable environments. We also argue for the need to develop and apply more integrative assessments of farm performance that combine the use of modelling tools with deliberative processes involving farmers and researchers in a co-learning process, to more effectively identify and implement more productive and resilient farm businesses. In a plastic farming system, farm management is highly contingent on environmental conditions. In plastic farming systems farm managers constantly vary crops and inputs based on the availability of limited and variable resources (e.g. land, water, finances, labour, machinery, etc.), and signals from its operating environment (e.g. climate, markets), with the objective of maximising a number of, often competing, objectives (e.g. maximise profits, minimise risks, etc.). In contrast in more rigid farming systems farm management is more calendar driven and relatively fixed sequences of crops are regularly followed over time and across the farm. Here we describe the application of a whole farm simulation model to (i) compare, in silico, the sensitivity of two farming systems designs of contrasting levels of plasticity, operating in two contrasting environments, when exposed to a stressor in the form of climate change scenarios;(ii) investigate the presence of interactions and feedbacks at the field and farm levels capable of modifying the intensity and direction of the responses to climate signals; and (iii) discuss the need for the development and application of more integrative assessments in the analysis of impacts and adaptation options to climate change. In both environments, the more plastic farm management strategy had higher median profits and was less risky for the baseline and less intensive climate change scenarios (2030). However, for the more severe climate change scenarios (2070), the benefit of plastic strategies tended to disappear. These results suggest that, to a point, farming systems having higher levels of plasticity would enable farmers to more effectively respond to climate shifts, thus ensuring the economic viability of the farm business. Though, as the intensity of the stress increases (e.g. 2070 climate change scenario) more significant changes in the farming system might be required to adapt. We also found that in the case studies analysed here, most of the impacts from the climate change scenarios on farm profit and economic risk originated from important reductions in cropping intensity and changes in crop mix rather than from changes in the yields of individual crops. Changes in cropping intensity and crop mix were explained by the combination of reductions in the number of sowing opportunities around critical times in the cropping calendar, and to operational constraints at the whole farm level i.e. limited work capacity in an environment having fewer and more concentrated sowing opportunities. This indicates that indirect impacts from shifts in climate on farm operations can be more important than direct impacts from climate on the yield of individual crops. The results suggest that due to the complexity of farm businesses, impact assessments and opportunities for adaptation to climate change might also need to be pursued at higher integration levels than the crop or the field. We conclude that plasticity can be a desirable characteristic in farming systems operating in highly variable environments, and that integrated whole farm systems analyses of impacts and adaptation to climate change are required to identify important interactions between farm management decision rules, availability of resources, and farmer's preference.
Resumo:
Two prerequisites for realistically embarking upon an eradication programme are that cost-benefit analysis favours this strategy over other management options and that sufficient resources are available to carry the programme through to completion. These are not independent criteria, but it is our view that too little attention has been paid to estimating the investment required to complete weed eradication programmes. We deal with this problem by using a two-pronged approach: 1) developing a stochastic dynamic model that provides an estimation of programme duration; and 2) estimating the inputs required to delimit a weed incursion and to prevent weed reproduction over a sufficiently long period to allow extirpation of all infestations. The model is built upon relationships that capture the time-related detection of new infested areas, rates of progression of infestations from the active to the monitoring stage, rates of reversion of infestations from the monitoring to active stage, and the frequency distribution of time since last detection for all infestations. This approach is applied to the branched broomrape (Orobanche ramosa) eradication programme currently underway in South Australia. This programme commenced in 1999 and currently 7450 ha are known to be infested with the weed. To date none of the infestations have been eradicated. Given recent (2008) levels of investment and current eradication methods, model predictions are that it would take, on average, an additional 73 years to eradicate this weed at an average additional cost (NPV) of $AU67.9m. When the model was run for circumstances in 2003 and 2006, the average programme duration and total cost (NPV) were predicted to be 159 and 94 years, and $AU91.3m and $AU72.3m, respectively. The reduction in estimated programme length and cost may represent progress towards the eradication objective, although eradication of this species still remains a long term prospect.
Resumo:
The Australian African mahogany estate comprises over 12,000 ha of industrial plantations, farm-forestry plots and trials, virtually all derived from Africa-sourced wild seed. However, the better trees have given high-value products such as veneers, high-grade boards and award-winning furniture. Collaborative conservation and improvement by the Northern Territory (NT) and Queensland governments since 2000 realised seed orchards, hedge gardens and genetic tests revealing promising clones and families. Private sector R&D since the mid 2000s includes silvicultural-management and wood studies, participatory testing of government material and establishing over 90 African provenances and many single-tree seedlots in multisite provenance and family trials. Recent, mainly public sector research included a 5-agency project of 2009-12 resulting in advanced propagation technologies and greater knowledge of biology, wood properties and processing. Operational priority in the short term should focus on developing seed production areas and ‘rolling front’ clonal seed orchards. R&D priorities should include: developing and implementing a collaborative improvement strategy based on pooled resources; developing non-destructive evaluation of select-tree wood properties, micropropagation (including field testing of material from this source) to ‘industry ready’ and a select-tree index; optimising seed production in orchards; advancing controlled pollination techniques; and maximising benefits from the progeny, clone and provenance trials. Australia leads the world in improvement and ex situ conservation of African mahogany based on the governments’ 13-year program and more recent industry inputs such that accumulated genetic resources total over 120 provenances and many families from 15 of the 19 African countries of its range. Having built valuable genetic resources, expertise, technologies and knowledge, the species is almost ‘industry ready’. The industry will benefit if it exploits the comparative advantage these assets provide. However the status of much of the diverse germplasm introduced since the mid 2000s is uncertain due to changes in ownership. Further, recent reductions of government investment in forestry R&D will be detrimental unless the industry fills the funding gaps. Expansion and sustainability of the embryonic industry must capitalise on past and current R&D, while initiating and sustaining critical new work through all-stakeholder collaboration.
Resumo:
Non-Technical Summary Seafood CRC Project 2009/774. Harvest strategy evaluations and co-management for the Moreton Bay Trawl Fishery Principal Investigator: Dr Tony Courtney, Principal Fisheries Biologist Fisheries and Aquaculture, Agri-Science Queensland Department of Agriculture, Fisheries and Forestry Level B1, Ecosciences Precinct, Joe Baker St, Dutton Park, Queensland 4102 Email: tony.courtney@daff.qld.gov.au Project objectives: 1. Review the literature and data (i.e., economic, biological and logbook) relevant to the Moreton Bay trawl fishery. 2. Identify and prioritise management objectives for the Moreton Bay trawl fishery, as identified by the trawl fishers. 3. Undertake an economic analysis of Moreton Bay trawl fishery. 4. Quantify long-term changes to fishing power for the Moreton Bay trawl fishery. 5. Assess priority harvest strategies identified in 2 (above). Present results to, and discuss results with, Moreton Bay Seafood Industry Association (MBSIA), fishers and Fisheries Queensland. Note: Additional, specific objectives for 2 (above) were developed by fishers and the MBSIA after commencement of the project. These are presented in detail in section 5 (below). The project was an initiative of the MBSIA, primarily in response to falling profitability in the Moreton Bay prawn trawl fishery. The analyses were undertaken by a consortium of DAFF, CSIRO and University of Queensland researchers. This report adopted the Australian Standard Fish Names (http://www.fishnames.com.au/). Trends in catch and effort The Moreton Bay otter trawl fishery is a multispecies fishery, with the majority of the catch composed of Greasyback Prawns (Metapenaeus bennettae), Brown Tiger Prawns (Penaeus esculentus), Eastern King Prawns (Melicertus plebejus), squid (Uroteuthis spp., Sepioteuthis spp.), Banana Prawns (Fenneropenaeus merguiensis), Endeavour Prawns (Metapenaeus ensis, Metapenaeus endeavouri) and Moreton Bay bugs (Thenus parindicus). Other commercially important byproduct includes blue swimmer crabs (Portunus armatus), three-spot crabs (Portunus sanguinolentus), cuttlefish (Sepia spp.) and mantis shrimp (Oratosquilla spp.). Logbook catch and effort data show that total annual reported catch of prawns from the Moreton Bay otter trawl fishery has declined to 315 t in 2008 from a maximum of 901 t in 1990. The number of active licensed vessels participating in the fishery has also declined from 207 in 1991 to 57 in 2010. Similarly, fishing effort has fallen from a peak of 13,312 boat-days in 1999 to 3817 boat-days in 2008 – a 71% reduction. The declines in catch and effort are largely attributed to reduced profitability in the fishery due to increased operational costs and depressed prawn prices. The low prawn prices appear to be attributed to Australian aquacultured prawns and imported aquacultured vannamei prawns, displacing the markets for trawl-caught prawns, especially small species such as Greasyback Prawns which traditionally dominated landings in Moreton Bay. In recent years, the relatively high Australian dollar has resulted in reduced exports of Australian wild-caught prawns. This has increased supply on the domestic market which has also suppressed price increases. Since 2002, Brown Tiger Prawns have dominated annual reported landings in the Moreton Bay fishery. While total catch and effort in the bay have declined to historically low levels, the annual catch and catch rates of Brown Tiger Prawns have been at record highs in recent years. This appears to be at least partially attributed to the tiger prawn stock having recovered from excessive effort in previous decades. The total annual value of the Moreton Bay trawl fishery catch, including byproduct, is about $5 million, of which Brown Tiger Prawns account for about $2 million. Eastern King Prawns make up about 10% of the catch and are mainly caught in the bay from October to December as they migrate to offshore waters outside the bay where they contribute to a large mono-specific trawl fishery. Some of the Eastern King Prawns harvested in Moreton Bay may be growth overfished (i.e., caught below the size required to maximise yield or value), although the optimum size-at-capture was not determined in this study. Banana Prawns typically make up about 5% of the catch, but can exceed 20%, particularly following heavy rainfall. Economic analysis of the fishery From the economic survey, cash profits were, on average, positive for both fleet segments in both years of the survey. However, after the opportunity cost of capital and depreciation were taken into account, the residual owner-operator income was relatively low, and substantially lower than the average share of revenue paid to employed skippers. Consequently, owner-operators were earning less than their opportunity cost of their labour, suggesting that the fleets were economically unviable in the longer term. The M2 licensed fleet were, on average, earning similar boat cash profits as the T1/M1 fleet, although after the higher capital costs were accounted for the T1/M1 boats were earning substantially lower returns to owner-operator labour. The mean technical efficiency for the fleet as a whole was estimated to be 0.67. That is, on average, the boats were only catching 67 per cent of what was possible given their level of inputs (hours fished and hull units). Almost one-quarter of observations had efficiency scores above 0.8, suggesting a substantial proportion of the fleet are relatively efficient, but some are also relatively inefficient. Both fleets had similar efficiency distributions, with median technical efficiency score of 0.71 and 0.67 for the M2 and T1/M1 boats respectively. These scores are reasonably consistent with other studies of prawn trawl fleets in Australia, although higher average efficiency scores were found in the NSW prawn trawl fleet. From the inefficiency model, several factors were found to significantly influence vessel efficiency. These included the number of years of experience as skipper, the number of generations that the skipper’s family had been fishing and the number of years schooling. Skippers with more schooling were significantly more efficient than skippers with lower levels of schooling, consistent with other studies. Skippers who had been fishing longer were, in fact, less efficient than newer skippers. However, this was mitigated in the case of skippers whose family had been involved in fishing for several generations, consistent with other studies and suggesting that skill was passed through by families over successive generations. Both the linear and log-linear regression models of total fishing effort against the marginal profit per hour performed reasonably well, explaining between 70 and 84 per cent of the variation in fishing effort. As the models had different dependent variables (one logged and the other not logged) this is not a good basis for model choice. A better comparator is the square root of the mean square error (SMSE) expressed as a percentage of the mean total effort. On this criterion, both models performed very similarly. The linear model suggests that each additional dollar of average profits per hour in the fishery increases total effort by around 26 hours each month. From the log linear model, each percentage increase in profits per hour increases total fishing effort by 0.13 per cent. Both models indicate that economic performance is a key driver of fishing effort in the fishery. The effect of removing the boat-replacement policy is to increase individual vessel profitability, catch and effort, but the overall increase in catch is less than that removed by the boats that must exit the fishery. That is, the smaller fleet (in terms of boat numbers) is more profitable but the overall catch is not expected to be greater than before. This assumes, however, that active boats are removed, and that these were also taking an average level of catch. If inactive boats are removed, then catch of the remaining group as a whole could increase by between 14 and 17 per cent depending on the degree to which costs are reduced with the new boats. This is still substantially lower than historical levels of catch by the fleet. Fishing power analyses An analysis of logbook data from 1988 to 2010, and survey information on fishing gear, was performed to estimate the long-term variation in the fleet’s ability to catch prawns (known as fishing power) and to derive abundance estimates of the three most commercially important prawn species (i.e., Brown Tiger, Eastern King and Greasyback Prawns). Generalised linear models were used to explain the variation in catch as a function of effort (i.e., hours fished per day), vessel and gear characteristics, onboard technologies, population abundance and environmental factors. This analysis estimated that fishing power associated with Brown Tiger and Eastern King Prawns increased over the past 20 years by 10–30% and declined by approximately 10% for greasybacks. The density of tiger prawns was estimated to have almost tripled from around 0.5 kg per hectare in 1988 to 1.5 kg/ha in 2010. The density of Eastern King Prawns was estimated to have fluctuated between 1 and 2 kg per hectare over this time period, without any noticeable overall trend, while Greasyback Prawn densities were estimated to have fluctuated between 2 and 6 kg per hectare, also without any distinctive trend. A model of tiger prawn catches was developed to evaluate the impact of fishing on prawn survival rates in Moreton Bay. The model was fitted to logbook data using the maximum-likelihood method to provide estimates of the natural mortality rate (0.038 and 0.062 per week) and catchability (which can be defined as the proportion of the fished population that is removed by one unit of effort, in this case, estimated to be 2.5 ± 0.4 E-04 per boat-day). This approach provided a method for industry and scientists to develop together a realistic model of the dynamics of the fishery. Several aspects need to be developed further to make this model acceptable to industry. Firstly, there is considerable evidence to suggest that temperature influences prawn catchability. This ecological effect should be incorporated before developing meaningful harvest strategies. Secondly, total effort has to be allocated between each species. Such allocation of effort could be included in the model by estimating several catchability coefficients. Nevertheless, the work presented in this report is a stepping stone towards estimating essential fishery parameters and developing representative mathematical models required to evaluate harvest strategies. Developing a method that allowed an effective discussion between industry, management and scientists took longer than anticipated. As a result, harvest strategy evaluations were preliminary and only included the most valuable species in the fishery, Brown Tiger Prawns. Additional analyses and data collection, including information on catch composition from field sampling, migration rates and recruitment, would improve the modelling. Harvest strategy evaluations As the harvest strategy evaluations are preliminary, the following results should not be adopted for management purposes until more thorough evaluations are performed. The effects, of closing the fishery for one calendar month, on the annual catch and value of Brown Tiger Prawns were investigated. Each of the 12 months (i.e., January to December) was evaluated. The results were compared against historical records to determine the magnitude of gain or loss associated with the closure. Uncertainty regarding the trawl selectivity was addressed using two selectivity curves, one with a weight at 50% selection (S50%) of 7 g, based on research data, and a second with S50% of 14 g, put forward by industry. In both cases, it was concluded that any monthly closure after February would not be beneficial to the industry. The magnitude of the benefit of closing the fishery in either January or February was sensitive to which mesh selectivity curve that was assumed, with greater benefit achieved when the smaller selectivity curve (i.e., S50% = 7 g) was assumed. Using the smaller selectivity (S50% = 7 g), the expected increase in catch value was 10–20% which equates to $200,000 to $400,000 annually, while the larger selectivity curve (S50% = 14 g) suggested catch value would be improved by 5–10%, or $100,000 to $200,000. The harvest strategy evaluations showed that greater benefits, in the order of 30–60% increases in the tiger annual catch value, could have been obtained by closing the fishery early in the year when annual effort levels were high (i.e., > 10,000 boat-days). In recent years, as effort levels have declined (i.e., ~4000 boat-days annually), expected benefits from such closures are more modest. In essence, temporal closures offer greater benefit when fishing mortality rates are high. A spatial analysis of Brown Tiger Prawn catch and effort was also undertaken to obtain a better understanding of the prawn population dynamics. This indicated that, to improve profitability of the fishery, fishers could consider closing the fishery in the period from June to October, which is already a period of low profitability. This would protect the Brown Tiger Prawn spawning stock, increase catch rates of all species in the lucrative pre-Christmas period (November–December), and provide fishers with time to do vessel maintenance, arrange markets for the next season’s harvest, and, if they wish, work at other jobs. The analysis found that the instantaneous rate of total mortality (Z) for the March–June period did not vary significantly over the last two decades. As the Brown Tiger Prawn population in Moreton Bay has clearly increased over this time period, an interesting conclusion is that the instantaneous rate of natural mortality (M) must have increased, suggesting that tiger prawn natural mortality may be density-dependent at this time of year. Mortality rates of tiger prawns for June–October were found to have decreased over the last two decades, which has probably had a positive effect on spawning stocks in the October–November spawning period. Abiotic effects on the prawns The influence of air temperature, rainfall, freshwater flow, the southern oscillation index (SOI) and lunar phase on the catch rates of the four main prawn species were investigated. The analyses were based on over 200,000 daily logbook catch records over 23 years (i.e., 1988–2010). Freshwater flow was more influential than rainfall and SOI, and of the various sources of flow, the Brisbane River has the greatest volume and influence on Moreton Bay prawn catches. A number of time-lags were also considered. Flow in the preceding month prior to catch (i.e., 30 days prior, Logflow1_30) and two months prior (31–60 days prior, Logflow31_60) had strong positive effects on Banana Prawn catch rates. Average air temperature in the preceding 4-6 months (Temp121_180) also had a large positive effect on Banana Prawn catch rates. Flow in the month immediately preceding catch (Logflow1_30) had a strong positive influence on Greasyback Prawn catch rates. Air temperature in the preceding two months prior to catch (Temp1_60) had a large positive effect on Brown Tiger Prawn catch rates. No obvious or marked effects were detected for Eastern King Prawns, although interestingly, catch rates declined with increasing air temperature 4–6 months prior to catch. As most Eastern King Prawn catches in Moreton Bay occur in October to December, the results suggest catch rates decline with increasing winter temperatures. In most cases, the prawn catch rates declined with the waxing lunar phase (high luminance/full moon), and increased with the waning moon (low luminance/new moon). The SOI explains little additional variation in prawn catch rates (~ <2%), although its influence was higher for Banana Prawns. Extrapolating findings of the analyses to long-term climate change effects should be interpreted with caution. That said, the results are consistent with likely increases in abundance in the region for the two tropical species, Banana Prawns and Brown Tiger Prawns, as coastal temperatures rise. Conversely, declines in abundance could be expected for the two temperate species, Greasyback and Eastern King Prawns. Corporate management structures An examination of alternative governance systems was requested by the industry at one of the early meetings, particularly systems that may give them greater autonomy in decision making as well as help improve the marketing of their product. Consequently, a review of alternative management systems was undertaken, with a particular focus on the potential for self-management of small fisheries (small in terms of number of participants) and corporate management. The review looks at systems that have been implemented or proposed for other small fisheries internationally, with a particular focus on self-management as well as the potential benefits and challenges for corporate management. This review also highlighted particular opportunities for the Moreton Bay prawn fishery. Corporate management differs from other co-management and even self-management arrangements in that ‘ownership’ of the fishery is devolved to a company in which fishers and government are shareholders. The company manages the fishery as well as coordinates marketing to ensure that the best prices are received and that the catch taken meets the demands of the market. Coordinated harvesting will also result in increased profits, which are returned to fishers in the form of dividends. Corporate management offers many of the potential benefits of an individual quota system without formally implementing such a system. A corporate management model offers an advantage over a self-management model in that it can coordinate both marketing and management to take advantage of this unique geographical advantage. For such a system to be successful, the fishery needs to be relatively small and self- contained. Small in this sense is in terms of number of operators. The Moreton Bay prawn fishery satisfies these key conditions for a successful self-management and potentially corporate management system. The fishery is small both in terms of number of participants and geography. Unlike other fisheries that have progressed down the self-management route, the key market for the product from the Moreton Bay fishery is right at its doorstep. Corporate management also presents a number of challenges. First, it will require changes in the way fishers operate. In particular, the decision on when to fish and what to catch will be taken away from the individual and decided by the collective. Problems will develop if individuals do not join the corporation but continue to fish and market their own product separately. While this may seem an attractive option to fishers who believe they can do better independently, this is likely to be just a short- term advantage with an overall long-run cost to themselves as well as the rest of the industry. There are also a number of other areas that need further consideration, particularly in relation to the allocation of shares, including who should be allocated shares (e.g. just boat owners or also some employed skippers). Similarly, how harvesting activity is to be allocated by the corporation to the fishers. These are largely issues that cannot be answered without substantial consultation with those likely to be affected, and these groups cannot give these issues serious consideration until the point at which they are likely to become a reality. Given the current structure and complexity of the fishery, it is unlikely that such a management structure will be feasible in the short term. However, the fishery is a prime candidate for such a model, and development of such a management structure in the future should be considered as an option for the longer term.
Resumo:
The availability and quality of irrigation water has become an issue limiting productivity in many Australian vegetable regions. Production is also under competitive pressure from supply chain forces. Producers look to new technologies, including changing irrigation infrastructure, exploring new water sources, and more complex irrigation management, to survive these stresses. Often there is little objective information investigating which improvements could improve outcomes for vegetable producers, and external communities (e.g. meeting NRM targets). This has led to investment in inappropriate technologies, and costly repetition of errors, as business independently discover the worth of technologies by personal experience. In our project, we investigated technology improvements for vegetable irrigation. Through engagement with industry and other researchers, we identified technologies most applicable to growers, particularly those that addressed priority issues. We developed analytical tools for ‘what if’ scenario testing of technologies. We conducted nine detailed experiments in the Lockyer Valley and Riverina vegetable growing districts, as well as case studies on grower properties in southern Queensland. We investigated root zone monitoring tools (FullStop™ wetting front detectors and Soil Solution Extraction Tubes - SSET), drip system layout, fertigation equipment, and altering planting arrangements. Our project team developed and validated models for broccoli, sweet corn, green beans and lettuce, and spreadsheets for evaluating economic risks associated with new technologies. We presented project outcomes at over 100 extension events, including irrigation showcases, conferences, field days, farm walks and workshops. The FullStops™ were excellent for monitoring root zone conditions (EC, nitrate levels), and managing irrigation with poor quality water. They were easier to interpret than the SSET. The SSET were simpler to install, but required wet soil to be reliable. SSET were an option for monitoring deeper soil zones, unsuitable for FullStop™ installations. Because these root zone tools require expertise, and are labour intensive, we recommend they be used to address specific problems, or as a periodic auditing strategy, not for routine monitoring. In our research, we routinely found high residual N in horticultural soils, with subsequently little crop yield response to additional nitrogen fertiliser. With improved irrigation efficiency (and less leaching), it may be timely to re-examine nitrogen budgets and recommendations for vegetable crops. Where the drip irrigation tube was located close to the crop row (i.e. within 5-8 cm), management of irrigation was easier. It improved nitrogen uptake, water use efficiency, and reduced the risk of poor crop performance through moisture stress, particularly in the early crop establishment phases. Close proximity of the drip tube to the crop row gives the producer more options for managing salty water, and more flexibility in taking risks with forecast rain. In many vegetable crops, proximate drip systems may not be cost-effective. The next best alternative is to push crop rows closer to the drip tube (leading to an asymmetric row structure). The vegetable crop models are good at predicting crop phenology (development stages, time to harvest), input use (water, fertiliser), environmental impacts (nutrient, salt movement) and total yields. The two immediate applications for the models are understanding/predicting/manipulating harvest dates and nitrogen movements in vegetable cropping systems. From the economic tools, the major influences on accumulated profit are price and yield. In doing ‘what if’ analyses, it is very important to be as accurate as possible in ascertaining what the assumed yield and price ranges are. In most vegetable production systems, lowering the required inputs (e.g. irrigation requirement, fertiliser requirement) is unlikely to have a major influence on accumulated profit. However, if a resource is constraining (e.g. available irrigation water), it is usually most profitable to maximise return per unit of that resource.
Resumo:
We carried out a discriminant analysis with identity by descent (IBD) at each marker as inputs, and the sib pair type (affected-affected versus affected-unaffected) as the output. Using simple logistic regression for this discriminant analysis, we illustrate the importance of comparing models with different number of parameters. Such model comparisons are best carried out using either the Akaike information criterion (AIC) or the Bayesian information criterion (BIC). When AIC (or BIC) stepwise variable selection was applied to the German Asthma data set, a group of markers were selected which provide the best fit to the data (assuming an additive effect). Interestingly, these 25-26 markers were not identical to those with the highest (in magnitude) single-locus lod scores.
Resumo:
The specific objective of this paper is to develop multiloop controllers that would achieve asymptotic regulation in the presence of parameter variations and disturbance inputs for a tubular reactor used in ammonia synthesis. The dynamic model considered here has nine state variables, two control inputs, and two outputs. A systematic procedure for pairing the two inputs with the corresponding two outputs is presented. The two multiloop proportional controllers so configured are designed via the parameter plane method. This economic configuration of controllers maintains the temperature profile almost at the optimal value whereas the point controllers fail to do so.
Resumo:
The production of adequate agricultural outputs to support the growing human population places great demands on agriculture, especially in light of ever-greater restrictions on input resources. Sorghum is a drought-adapted cereal capable of reliable production where other cereals fail, and thus represents a good candidate to address food security as agricultural inputs of water and arable land grow scarce. A long-standing issue with sorghum grain is that it has an inherently lower digestibility. Here we show that a low-frequency allele type in the starch metabolic gene, pullulanase, is associated with increased digestibility, regardless of genotypic background. We also provide evidence that the beneficial allele type is not associated with deleterious pleiotropic effects in the modern field environment. We argue that increasing the digestibility of an adapted crop is a viable way forward towards addressing food security while maximizing water and land-use efficiency.
Resumo:
In aquatic systems, in-stream structures such as dams, weirs and road crossings can act as barriers to fish movement along waterways. There is a growing array of technological fish-pass solutions for the movement of fish across large structures such as weirs and dams. However, most existing weir structures lack dedicated fishways, and fish often have to rely on drowned conditions to move upstream. In order to assess the adequacy of a given or proposed weir for upstream fish passage under drowned conditions, it is necessary to determine, firstly, the hydraulic properties of the drowned weir with respect to the requirements of the fish community and, secondly, the duration and timing of drowning flows with respect to the hydrograph for the site and the likely timing of fish movements. This paper primarily addresses the first issue. A computer program has been developed and incorporated in a simple-to-operate spreadsheet for the determination of the hydraulic characteristics of a drowned weir which are important to fish movement. The program is based on a theoretical analysis of drowned weirs and subsequent extensive verification in laboratory experiments. Inputs to the program include site information comprising channel cross-section data, channel slope, and channel roughness, and weir information comprising weir height and the required minimum drowned depth over the weir for migrating fish passage. The program then calculates the flow rate at which the required level of drowning occurs, the velocity characteristics above the weir (including transverse distributions), and flow depths and velocities upstream and downstream of the weir. The paper discusses (briefly) the theoretical background of the program and its experimental verification. A case study is then presented that illustrates the use of the program in the field to assess fish passage opportunities at an existing weir and to develop a case for retrofitting a fishway. Some discussion is also provided on the contribution of a modelled drownout volume to the assessment of how significant a barrier a weir is to fish passage. It is shown that the program is an important new additional tool in the assessment of the adequacy of weir structures in providing for fish movement and informing associated fish passage solutions. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Nitrogen (N) is one of the main inputs in cereal cultivation and as more than half of the arable land in Finland is used for cereal production, N has contributed substantially to agricultural pollution through fertilizer leaching and runoff. Based on this global phenomenon, the European Community has launched several directives to reduce agricultural emissions to the environment. Trough such measures, and by using economic incentives, it is expected that northern European agricultural practices will, in the future, include reduced N fertilizer application rates. Reduced use of N fertilizer is likely to decrease both production costs and pollution, but could also result in reduced yields and quality if crops experience temporary N deficiency. Therefore, more efficient N use in cereal production, to minimize pollution risks and maximize farmer income, represents a current challenge for agronomic research in the northern growing areas. The main objective of this study was to determine the differences in nitrogen use efficiency (NUE) among spring cereals grown in Finland. Additional aims were to characterize the multiple roles of NUE by analysing the extent of variation in NUE and its component traits among different cultivars, and to understand how other physiological traits, especially radiation use efficiency (RUE) and light interception, affect and interact with the main components of NUE and contribute to differences among cultivars. This study included cultivars of barley (Hordeum vulgare L.), oat (Avena sativa L.) and wheat (Triticum aestivum L.). Field experiments were conducted between 2001 and 2004 at Jokioinen, in Finland. To determine differences in NUE among cultivars and gauge the achievements of plant breeding in NUE, 17-18 cultivars of each of the three cereal species released between 1909 and 2002 were studied. Responses to nitrogen of landraces, old cultivars and modern cultivars of each cereal species were evaluated under two N regimes (0 and 90 kg N ha-1). Results of the study revealed that modern wheat, oat and barley cultivars had similar NUE values under Finnish growing conditions and only results from a wider range of cultivars indicated that wheat cultivars could have lower NUE than the other species. There was a clear relationship between nitrogen uptake efficiency (UPE) and NUE in all species whereas nitrogen utilization efficiency (UTE) had a strong positive relationship with NUE only for oat. UTE was clearly lower in wheat than in other species. Other traits related to N translocation indicated that wheat also had a lower harvest index, nitrogen harvest index and nitrogen remobilisation efficiency and therefore its N translocation efficiency was confirmed to be very low. On the basis of these results there appears to be potential and also a need for improvement in NUE. These results may help understand the underlying physiological differences in NUE and could help to identify alternative production options, such as the different roles that species can play in crop rotations designed to meet the demands of modern agricultural practices.
Resumo:
Pion photoproduction processes14Ngs(gamma, pgr +)14C and14Ngs(gamma, pgr –)14O have been studied in the threshold region. These processes provide an excellent tool to study the corrections to soft pion theorems and Kroll-Ruderman limit as applied to nuclear processes. The agreement with the available experimental data for these processes is better with the empirical wave functions while the shell-model wave functions predict a much higher value. Detailed experimental studies of these reactions at threshold, it is shown, are expected to lead to a better understanding of the shell-model inputs and radial distributions in the 1p state. We thank Dr. S.C.K. Nair for a helpful discussion during the initial stages of this work. One of us (MVN) thanks Dr. J.M. Laget for sending some unpublished data on pion photoproduction. He is also thankful to Dr. J. Pasupathy and Dr. R. Rajaraman for their interest and encouragement.