957 resultados para CELL MEMBRANE MODELS
Resumo:
The dopamine antagonist [3H]-domperidone-[3H]-DOM-bound to a single class of high-affinity (Kd = 1.24 +/- 0.14 nM) and saturable receptors on dispersed bovine anterior pituitary (AP) cells. The binding of [3H]-DOM was stereoselective and reversible with agonists and antagonists. Dopamine competitions for [3H]-DOM binding modeled best for a single site consistent with an interaction with a homogeneous population of receptors. The mean number of specific binding sites labeled by [3H]-DOM was 53,000 per cell in dispersed AP cells consisting of 42% lactotrophs. Dispersed bovine AP cells attached to extracellular matrix within 3 h, and prolactin secretion from these cells was effectively inhibited by dopamine. Several observations suggested that [3H]-DOM-labeled receptors on dispersed bovine AP cells were restricted to the outer plasma membrane and not internalized. These included (1) the rapid and complete dissociation of specific [3H]-DOM binding; (2) the ability of treatment with acid or proteolytic enzymes to entirely remove specifically bound [3H]-DOM, and (3) the lack of effect of metabolic inhibitors on specific [3H]-DOM binding.
Resumo:
BACKGROUND: Fish oil (FO) has antiinflammatory effects, which might reduce systemic inflammation induced by a cardiopulmonary bypass (CPB). OBJECTIVE: We tested whether perioperative infusions of FO modify the cell membrane composition, inflammatory responses, and clinical course of patients undergoing elective coronary artery bypass surgery. DESIGN: A prospective randomized controlled trial was conducted in cardiac surgery patients who received 3 infusions of 0.2 g/kg FO emulsion or saline (control) 12 and 2 h before and immediately after surgery. Blood samples (7 time points) and an atrial biopsy (during surgery) were obtained to assess the membrane incorporation of PUFAs. Hemodynamic data, catecholamine requirements, and core temperatures were recorded at 10-min intervals; blood triglycerides, nonesterified fatty acids, glucose, lactate, inflammatory cytokines, and carboxyhemoglobin concentrations were measured at selected time points. RESULTS: Twenty-eight patients, with a mean ± SD age of 65.5 ± 9.9 y, were enrolled with no baseline differences between groups. Significant increases in platelet EPA (+0.86%; P = 0.0001) and DHA (+0.87%; P = 0.019) were observed after FO consumption compared with at baseline. Atrial tissue EPA concentrations were higher after FO than after control treatments (+0.5%; P < 0.0001). FO did not significantly alter core temperature but decreased the postoperative rise in IL-6 (P = 0.018). Plasma triglycerides increased transiently after each FO infusion. Plasma concentrations of glucose, lactate, and blood carboxyhemoglobin were lower in the FO than in the control group on the day after surgery. Arrhythmia incidence was low with no significant difference between groups. No adverse effect of FO was detected. CONCLUSIONS: Perioperative FO infusions significantly increased PUFA concentrations in platelet and atrial tissue membranes within 12 h of the first FO administration and decreased biological and clinical signs of inflammation. These results suggest that perioperative FO may be beneficial in elective cardiac surgery with CPB. This trial was registered at clinicaltrials.gov as NCT00516178.
Resumo:
Fifty years ago, the introduction of penicillin, followed by many other antibacterial agents, represented an often underestimated medical revolution. Indeed, until that time, bacterial infections were the prime cause of mortality, especially in children and elderly patients. The discovery of numerous new substances and their development on an industrial scale confronted us with the illusion that bacterial infections were all but vanquished. However, the widespread and sometimes uncontrolled usage of these agents has led to the selection of bacteria resistant to practically all available antibiotics. Bacteria utilize three main resistance strategies: (i) decrease in drug accumulation, (ii) modification of target, and (iii) modification of the antibiotic. Bacteria can decrease drug accumulation either by becoming impermeable to antibiotics, or by actively excreting the drug accumulated in the cell. As an alternative, they can modify the structure of the antibiotic's molecular target--usually an essential metabolic enzyme of the bacteria--and thus escape the drug's toxic effect. Lastly, they can produce enzymes capable of modifying and directly inactivating the antibiotics. In addition, bacteria have evolved extremely efficient genetic transfer systems capable of exchanging and accumulating resistance genes. Some pathogens, such as methicillin-resistant Staphylococcus aureus and enterococci are now resistant to almost all available antibiotics. Vancomycin is the only non-experimental drug left to treat severe infections due to such organisms. However, vancomycin resistance has already appeared several years ago in enterococci, and was also recently described in staphylococci, in Japan, France and the United-States. Antibiotics are precious drugs which must be administered to patients who need them. On the other hand, the development of resistance must be kept under control by a better comprehension of its mechanisms and modes of transmission and by abiding by the fundamental rules of anti-infectious chemotherapy, i.e.: (i) choose the most efficient antibiotic according to clinical and local epidemiological data, (ii) target the bacteria according to the microbiological data at hand, and (iii) administer the antibiotic at an adequate dose which will leave the pathogen no chance to develop any resistance.
Resumo:
Thy-1 is a membrane glycoprotein suggested to stabilize or inhibit growth of neuronal processes. However, its precise function has remained obscure, because its endogenous ligand is unknown. We previously showed that Thy-1 binds directly to α(V)β(3) integrin in trans eliciting responses in astrocytes. Nonetheless, whether α(V)β(3) integrin might also serve as a Thy-1-ligand triggering a neuronal response has not been explored. Thus, utilizing primary neurons and a neuron-derived cell line CAD, Thy-1-mediated effects of α(V)β(3) integrin on growth and retraction of neuronal processes were tested. In astrocyte-neuron co-cultures, endogenous α(V)β(3) integrin restricted neurite outgrowth. Likewise, α(V)β(3)-Fc was sufficient to suppress neurite extension in Thy-1(+), but not in Thy-1(-) CAD cells. In differentiating primary neurons exposed to α(V)β(3)-Fc, fewer and shorter dendrites were detected. This effect was abolished by cleavage of Thy-1 from the neuronal surface using phosphoinositide-specific phospholipase C (PI-PLC). Moreover, α(V)β(3)-Fc also induced retraction of already extended Thy-1(+)-axon-like neurites in differentiated CAD cells as well as of axonal terminals in differentiated primary neurons. Axonal retraction occurred when redistribution and clustering of Thy-1 molecules in the plasma membrane was induced by α(V)β(3) integrin. Binding of α(V)β(3)-Fc was detected in Thy-1 clusters during axon retraction of primary neurons. Moreover, α(V)β(3)-Fc-induced Thy-1 clustering correlated in time and space with redistribution and inactivation of Src kinase. Thus, our data indicates that α(V)β(3) integrin is a ligand for Thy-1 that upon binding not only restricts the growth of neurites, but also induces retraction of already existing processes by inducing Thy-1 clustering. We propose that these events participate in bi-directional astrocyte-neuron communication relevant to axonal repair after neuronal damage.
Resumo:
Partitioning of proteins in cholesterol and sphingolipid enriched plasma membrane microdomains, called lipid rafts, is critical for many signal transduction and protein sorting events. Although raft partitioning of many signaling molecules remains to be determined, glycosylphosphatidyl-inositol (GPI)-anchored proteins possess high affinity for lipid rafts and are currently exploited as markers to investigate fundamental mechanisms in protein sorting and signal transduction events. In this study, we demonstrate that two recombinant GPI-anchored green fluorescent proteins (GFP-GPIs) that differ in their GPI signal sequence confer distinct localization in plasma membrane microdomains. GFP fused to the GPI signal of the decay accelerating factor GFP-GPI(DAF) partitioned exclusively in lipid rafts, whereas GFP fused to the GPI signal of TRAIL-R3, GFP-GPI(TRAIL-R3), associated only minimally with microdomains. In addition, we investigated the unique ability of purified GFP-GPIs to insert into membrane microdomains of primary lymphocytes. This cell surface painting allows rapid, stable, and functional association of the GPI-anchored proteins with the target cell plasma membrane. The distinct membrane localization of the two GFP-GPIs was observed irrespective of whether the GPI-anchored molecules were painted or transfected. Furthermore, we show that painted GFP-GPI(DAF) was totally dependent on the GPI anchor and that the membrane insertion was increased by the addition of raft-associated lipids such as cholesterol, sphingomyelin, and dipalmitoyl-phosphatidylethanolamine. Thus, this study provides evidence that different GPI signal sequences lead to distinct membrane microdomain localization and that painted GFP-GPI(DAF) serves as an excellent fluorescent marker for lipid rafts in live cells.
Resumo:
Abstract In humans, the skin is the largest organ of the body, covering up to 2m2 and weighing up to 4kg in an average adult. Its function is to preserve the body from external insults and also to retain water inside. This barrier function termed epidermal permeability barrier (EPB) is localized in the functional part of the skin: the epidermis. For this, evolution has built a complex structure of cells and lipids sealing the surface, the stratum corneum. The formation of this structure is finely tuned since it is not only formed once at birth, but renewed all life long. This active process gives a high plasticity and reactivity to skin, but also leads to various pathologies. ENaC is a sodium channel extensively studied in organs like kidney and lung due to its importance in regulating sodium homeostasis and fluid volume. It is composed of three subunits α, ß and r which are forming sodium selective channel through the cell membrane. Its presence in the skin has been demonstrated, but little is known about its physiological role. Previous work has shown that αENaC knockout mice displayed an abnormal epidermis, suggesting a role in differentiation processes that might be implicated in the EPB. The principal aim of this thesis has been to study the consequences for EPB function in mice deficient for αENaC by molecular and physiological means and to investigate the underlying molecular mechanisms. Here, the barrier function of αENaC knockout pups is impaired. Apparently not immediately after birth (permeability test) but 24h later, when evident water loss differences appeared compared to wildtypes. Neither the structural proteins of the epithelium nor the tights junctions showed any obvious alterations. In contrary, stratum corneum lipid disorders are most likely responsible for the barrier defect, accompanied by an impairment of skin surface acidification. To analyze in details this EPB defect, several hypotheses have been proposed: reduced sensibility to calcium which is the key activator far epidermal formation, or modification of ENaC-mediated ion fluxes/currents inside the epidermis. The cellular localization of ENaC and the action in the skin of CAPl, a positive regulator of ENaC, have been also studied in details. In summary, this study clearly demonstrates that ENaC is a key player in the EPB maintenance, because αENaC knockout pups are not able to adapt to the new environment (ex utero) as efficiently as the wildtypes, most likely due to impaired of sodium handling inside the epidermis. Résumé Chez l'homme, la peau est le plus grand organe, couvrant presque 2m2 et pesant près de 4kg chez l'adulte. Sa fonction principale est de protéger l'organisme des agressions extérieures mais également de conserver l'eau à l'intérieur du corps. Cette fonction nommée barrière épithéliale est localisée dans la partie fonctionnelle de la peau : l'épiderme. A cette fin, l'évolution s'est dotée d'une structure complexe composée de cellules et de lipides recouvrant la surface, la couche cornée. Sa formation est finement régulée, car elle n'est pas seulement produite à la naissance mais constamment renouvelée tout au long de la vie, ce qui lui confère une grande plasticité mais ce qui est également la cause de nombreuses pathologies. ENaC est un canal sodique très étudié dans le rein et le poumon pour son importance dans la régulation de l'homéostasie sodique et la régulation du volume du milieu intérieur. Il est composé de 3 sous unités, α, ß et y qui forment un pore sélectif pour le sodium dans les membranes. Ce canal est présent dans la peau mais sa fonction n'y est pas connue. Des travaux précédents ont pu montrer que les souris dont le gène codant pour αENaC a été invalidé présentent un épiderme pathologique, suggérant un rôle dans la différentiation et pourrait même être impliqué dans la barrière épithéliale. Le but de cette thèse fut l'étude de la barrière dans ces souris knockouts avec des méthodes moléculaires et physiologiques et la caractérisation des mécanismes moléculaire impliqués. Dans ce travail, il a été montré que les souris mutantes présentaient un défaut de la barrière. Ce défaut n'est pas visible immédiatement à la naissance (test de perméabilité), mais 24h plus tard, lorsque les tests de perte d'eau transépithéliale montrent une différence évidente avec les animaux contrôles. Ni les protéines de structures ni les jonctions serrées de l'épiderme ne présentaient d'imperfections majeures. A l'inverse, les lipides de la couche cornée présentaient un problème de maturation (expliquant le phénotype de la barrière), certainement consécutif au défaut d'acidification à la surface de la peau que nous avons observé. D'autres mécanismes ont été explorées afin d'investiguer cette anomalie de la barrière, comme la réduction de sensibilité au calcium qui est le principal activateur de la formation de l'épiderme, ou la modification des flux d'ions entre les couches de l'épiderme. La localisation cellulaire d'ENaC, et l'action de son activateur CAPl ont également été étudiés en détails. En résumé, cette étude démontre clairement qu'ENaC est un acteur important dans la formation de la barrière épithéliale, car la peau des knockouts ne s'adapte pas aussi bien que celle des sauvages au nouvel environnement ex utero à cause de la fonction d'ENaC dans les mouvements de sodium au sein même de l'épiderme. Résumé tout public Chez l'homme, la peau est le plus grand organe, couvrant presque 2m2 et pesant près de 4kg chez l'adulte. Sa fonction principale est de protéger l'organisme des agressions extérieures mais également de conserver l'eau à l'intérieur du corps. Cette fonction nommée barrière épithéliale est localisée dans la partie fonctionnelle de la peau : l'épiderme. A cette fin, l'évolution s'est dotée d'une structure complexe composée de cellules et de lipides recouvrant la surface, la couche cornée. Sa formation est finement régulée, car elle n'est pas seulement produite à la naissance mais constamment renouvelée tout au long de la vie, ce qui lui confère une grande plasticité mais ce qui est également la cause de nombreuses maladies. ENaC est une protéine formant un canal qui permet le passage sélectif de l'ion sodium à travers la paroi des cellules. Il est très étudié dans le rein pour son importance dans la récupération du sel lors de la concentration de l'urine. Ce canal est présent dans la peau mais sa fonction n'y est pas connue. Des travaux précédents ont pu montrer que les souris où le gène codant pour αENaC a été invalidé présentent un épiderme pathologique, suggérant un rôle dans la peau et plus particulièrement la fonction de barrière de l'épiderme. Le but de cette thèse fut l'étude de la fonction de barrière dans ces souris mutantes, au niveau tissulaire et cellulaire. Dans ce travail, il a été montré que les souris mutantes présentaient une peau plus perméable que celle des animaux contrôles, grâce à une machine mesurant la perte d'eau à travers la peau. Ce défaut n'est visible que 24h après la naissance, mais nous avons pu montrer que les animaux mutants perdaient quasiment 2 fois plus d'eau que les contrôles. Au niveau moléculaire, nous avons pu montrer que ce défaut provenait d'un problème de maturation des lipides qui composent la barrière de la peau. Cette maturation est incomplète vraisemblablement à cause d'un défaut de mouvement des ions dans les couches les plus superficielles de l'épiderme, et cela à cause de l'absence du canal ENaC. En résumé, cette étude démontre clairement qu'ENaC est un acteur important dans la formation de la barrière épithéliale, car la peau des mutants ne s'adapte pas aussi bien que celle des sauvages au nouvel environnement ex utero à cause de la fonction d'ENaC dans les mouvements de sodium au sein même de l'épiderme.
Resumo:
Invasive aspergillosis (IA) is a life-threatening infection due to Aspergillus fumigatus and other Aspergillus spp. Drugs targeting the fungal cell membrane (triazoles, amphotericin B) or cell wall (echinocandins) are currently the sole therapeutic options against IA. Their limited efficacy and the emergence of resistance warrant the identification of new antifungal targets. Histone deacetylases (HDACs) are enzymes responsible of the deacetylation of lysine residues of core histones, thus controlling chromatin remodeling and transcriptional activation. HDACs also control the acetylation and activation status of multiple non-histone proteins, including the heat shock protein 90 (Hsp90), an essential molecular chaperone for fungal virulence and antifungal resistance. This review provides an overview of the different HDACs in Aspergillus spp. as well as their respective contribution to total HDAC activity, fungal growth, stress responses, and virulence. The potential of HDAC inhibitors, currently under development for cancer therapy, as novel alternative antifungal agents against IA is discussed.
Resumo:
Tyrosine kinase receptors lead to rapid activation of phosphatidylinositol 3-kinase (PI3 kinase) and the subsequent formation of phosphatidylinositides (PtdIns) 3,4-P2 and PtdIns 3,4, 5-P3, which are thought to be involved in signaling for glucose transporter GLUT4 translocation, cytoskeletal rearrangement, and DNA synthesis. However, the specific role of each of these PtdIns in insulin and growth factor signaling is still mainly unknown. Therefore, we assessed, in the current study, the effect of SH2-containing inositol phosphatase (SHIP) expression on these biological effects. SHIP is a 5' phosphatase that decreases the intracellular levels of PtdIns 3,4,5-P3. Expression of SHIP after nuclear microinjection in 3T3-L1 adipocytes inhibited insulin-induced GLUT4 translocation by 100 +/- 21% (mean +/- the standard error) at submaximal (3 ng/ml) and 64 +/- 5% at maximal (10 ng/ml) insulin concentrations (P < 0.05 and P < 0.001, respectively). A catalytically inactive mutant of SHIP had no effect on insulin-induced GLUT4 translocation. Furthermore, SHIP also abolished GLUT4 translocation induced by a membrane-targeted catalytic subunit of PI3 kinase. In addition, insulin-, insulin-like growth factor I (IGF-I)-, and platelet-derived growth factor-induced cytoskeletal rearrangement, i.e., membrane ruffling, was significantly inhibited (78 +/- 10, 64 +/- 3, and 62 +/- 5%, respectively; P < 0.05 for all) in 3T3-L1 adipocytes. In a rat fibroblast cell line overexpressing the human insulin receptor (HIRc-B), SHIP inhibited membrane ruffling induced by insulin and IGF-I by 76 +/- 3% (P < 0.001) and 68 +/- 5% (P < 0.005), respectively. However, growth factor-induced stress fiber breakdown was not affected by SHIP expression. Finally, SHIP decreased significantly growth factor-induced mitogen-activated protein kinase activation and DNA synthesis. Expression of the catalytically inactive mutant had no effect on these cellular responses. In summary, our results show that expression of SHIP inhibits insulin-induced GLUT4 translocation, growth factor-induced membrane ruffling, and DNA synthesis, indicating that PtdIns 3,4,5-P3 is the key phospholipid product mediating these biological actions.
Resumo:
Dendritic cells (DCs) can release microvesicles, but the latter's numbers, size, and fate are unclear. Fluorescently labeled DCs were visualized by laser-scanning microscopy. Using a Surpass algorithm, we were able to identify and quantify per cell several hundred microvesicles released from the surface of stimulated DCs. We show that most of these microvesicles are not of endocytic origin but result from budding of the plasma membrane, hence their name, exovesicle. Using a double vital staining, we show that exovesicles isolated from activated DCs can fuse with the membrane of resting DCs, thereby allowing them to present alloantigens to lymphocytes. We concluded that, within a few hours from their release, exovesicles may amplify local or distant adaptive immunological response.
Resumo:
Septins are conserved GTPases that form filaments and are required for cell division. During interphase, septin filaments associate with cellular membrane and cytoskeleton networks, yet the functional significance of these associations have, to our knowledge, remained unknown. We recently discovered that different septins, SEPT2 and SEPT11, regulate the InlB-mediated entry of Listeria monocytogenes into host cells. Here we address the role of SEPT2 and SEPT11 in the InlB-Met interactions underlying Listeria invasion to explore how septins modulate surface receptor function. We observed that differences in InlB-mediated Listeria entry correlated with differences in Met surface expression caused by septin depletion. Using atomic force microscopy on living cells, we show that septin depletion significantly reduced the unbinding force of InlB-Met interaction and the viscosity of membrane tethers at locations where the InlB-Met interaction occurs. Strikingly, the same order of difference was observed for cells in which the actin cytoskeleton was disrupted. Consistent with a proposed role of septins in association with the actin cytoskeleton, we show that cell elasticity is decreased upon septin or actin inactivation. Septins are therefore likely to participate in anchorage of the Met receptor to the actin cytoskeleton, and represent a critical determinant in surface receptor function.
Resumo:
Arabidopsis thaliana PHO1 is primarily expressed in the root vascular cylinder and is involved in the transfer of inorganic phosphate (Pi) from roots to shoots. To analyze the role of PHO1 in transport of Pi, we have generated transgenic plants expressing PHO1 in ectopic A. thaliana tissues using an estradiol-inducible promoter. Leaves treated with estradiol showed strong PHO1 expression, leading to detectable accumulation of PHO1 protein. Estradiol-mediated induction of PHO1 in leaves from soil-grown plants, in leaves and roots of plants grown in liquid culture, or in leaf mesophyll protoplasts, was all accompanied by the specific release of Pi to the extracellular medium as early as 2-3 h after addition of estradiol. Net Pi export triggered by PHO1 induction was enhanced by high extracellular Pi and weakly inhibited by the proton-ionophore carbonyl cyanide m-chlorophenylhydrazone. Expression of a PHO1-GFP construct complementing the pho1 mutant revealed GFP expression in punctate structures in the pericycle cells but no fluorescence at the plasma membrane. When expressed in onion epidermal cells or in tobacco mesophyll cells, PHO1-GFP was associated with similar punctate structures that co-localized with the Golgi/trans-Golgi network and uncharacterized vesicles. However, PHO1-GFP could be partially relocated to the plasma membrane in leaves infiltrated with a high-phosphate solution. Together, these results show that PHO1 can trigger Pi export in ectopic plant cells, strongly indicating that PHO1 is itself a Pi exporter. Interestingly, PHO1-mediated Pi export was associated with its localization to the Golgi and trans-Golgi networks, revealing a role for these organelles in Pi transport.
Resumo:
Abstract :The contraction of the heart or skeletal muscles is mainly due to the propagation, through excitable cells, of an electrical influx called action potential (AP). The AP results from the sequential opening of ion channels that generate inward or outward currents through the cell membrane. Among all the channels involved, the voltage-gated sodium channel is responsible for the rising phase of the action potential. Ten genes encode the different isoforms of these channels (from Nav1.1 to Nav1.9 and an atypical channel named NavX). Nav1.4 and Nav1.5 are the main skeletal muscle and cardiac sodium channels respectively. Their importance for muscle and heart function has been highlighted by the description of mutations in their encoding genes SCN4A and SCNSA. They lead respectively to neuromuscular disorders such as myotonia or paralysis (for Nav1.4), and to cardiac arrhythmias that can deteriorate into sudden cardiac death (for Nav1.5).The general aim of my PhD work has been to study diseases linked with channels dysfunction, also called channelopathies. In that purpose, I investigated the function and the regulation of the muscle and cardiac voltage-gated sodium channels. During the two first studies, I characterized the effects of two mutations affecting Nav1.4 and Nav1.5 function. I used the HEK293 model cells to express wild-type or mutant channels and then studied their biophysical properties with the patch-clamp technique, in whole cell configuration. We found that the SCN4A mutation produced complex alterations of the muscle sodium channel function, that could explain the myotonic phenotype described in patients carrying the mutation. In the second study, the index case was an heterozygous carrier of a SCNSA mutation that leads to a "loss of function" of the channel. The decreased sodium current measured with mutated Nay 1.5 channels, at physiological temperature, was a one of the factors that could explain the observed Brugada syndrome. The last project aimed at identifying a new potential protein interacting with the cardiac sodium channel. We found that the protein SAP97 binds the three last amino-acids of the C-terminus of Na,, 1.5. Our results also indicated that silencing the expression of SAP97 in HEK293 cells decreased the sodium current. Sodium channels lacking their three last residues also produced a reduced INa. These preliminary results suggest that SAP97 is implicated in the regulation of sodium channel. Whether this effect is direct or imply the action of an adaptor protein remains to be investigated. Moreover, our group has previously shown that Nav1.5 channels are localized to lateral membranes of cardiomyocytes by the dystrophin multiprotein complex (DMC). This suggests that sodium channels are distributed in, at least, two different pools: one targeted at lateral membranes by DMC and the other at intercalated discs by another protein such as SAP97.These studies reveal that cardiac and muscle diseases may result from ion channel mutations but also from regulatory proteins affecting their regulation.Résumé :La contraction des muscles et du coeur est principalement due à la propagation, à travers les cellules excitables, d'un stimulus électrique appelé potentiel d'action (PA). C'est l'ouverture séquentielle de plusieurs canaux ioniques transmembranaires, permettant l'entrée ou la sortie d'ions dans la cellule, qui est à l'origine de ce PA. Parmi tous les canaux ioniques impliqués dans ce processus, les canaux sodiques dépendant du voltage sont responsables de la première phase du potentiel d'action. Les différentes isoformes de ces canaux (de Nav1.1 à Nav1.9 et NavX) sont codées par dix gènes distincts. Nav1.4 et Nav1.5 sont les principaux variants exprimés respectivement dans le muscle et le coeur. Plusieurs mutations ont été décrites dans les gènes qui codent pour ces deux canaux: SCN4A (pour Nav1.4) et SCNSA (pour Nav1.5). Elles sont impliquées dans des pathologies neuromusculaires telles que des paralysies ou myotonies (SCN4A) ou des arythmies cardiaques pouvant conduire à la mort subite cardiaque (SCNSA).Mon travail de thèse a consisté à étudier les maladies liées aux dysfonctionnements de ces canaux, aussi appelées canalopathies. J'ai ainsi analysé la fonction et la régulation des canaux sodiques dépendant du voltage dans le muscle squelettique et le coeur. A travers les deux premières études, j'ai ainsi pu examiner les conséquences de deux mutations affectant respectivement les canaux Nav1.4 et Nav1.5. Les canaux sauvages ou mutants ont été exprimés dans des cellules HEK293 afin de caractériser leurs propriétés biophysiques par la technique du patch clamp en configuration cellule entière. Nous avons pu déterminer que la mutation trouvée dans le gène SCN4A engendrait des modifications importantes de la fonction du canal musculaire. Ces altérations fournissent des indications nous permettant d'expliquer certains aspects de la myotonie observée chez les membres de la famille étudiée. Le patient présenté dans la deuxième étude était hétérozygote pour la mutation identifiée dans le gène SCNSA. La perte de fonction des canaux Nav1.5 ainsi engendrée, a été observée lors d'analyses à températures physiologiques. Elle représente l'un des éléments pouvant potentiellement expliquer le syndrome de Brugada du patient. La dernière étude a consisté à identifier une nouvelle protéine impliquée dans la régulation du canal sodique cardiaque. Nos expériences ont démontré que les trois derniers acides aminés de la partie C-terminale de Nav1.5 pouvaient interagir avec la protéine SAP97. Lorsque que l'expression de la SAP97 est réduite dans les cellules HEK293, cela induit une baisse importante du courant sodique. De même, les canaux tronqués de leurs trois derniers acides aminés génèrent un flux ionique réduit. Ces résultats préliminaires suggèrent que SAP97 est peut-être impliquée dans la régulation du canal Na,,1.5. Des expériences complémentaires permettront de déterminer si ces deux protéines interagissent directement ou si une protéine adaptatrice est nécessaire. De plus, nous avons préalablement montré que les canaux Nav1.5 étaient localisés au niveau de la membrane latérale des cardiomyocytes par le complexe multiprotéique de la dystrophine (DMC). Ceci suggère que les canaux sodiques peuvent être distribués dans un minimum de deux pools, l'un ciblé aux membranes latérales pax le DMC et l'autre dirigé vers les disques intercalaires par des protéines telles que SAP97.L'ensemble de ces études met en évidence que certaines maladies musculaires et cardiaques peuvent être la conséquence directe de mutations de canaux ioniques, mais que l'action de protéines auxiliaires peut aussi affecter leur fonction.
Resumo:
Health assessment and medical surveillance of workers exposed to combustion nanoparticles are challenging. The aim was to evaluate the feasibility of using exhaled breath condensate (EBC) from healthy volunteers for (1) assessing the lung deposited dose of combustion nanoparticles and (2) determining the resulting oxidative stress by measuring hydrogen peroxide (H2O2) and malondialdehyde (MDA). Methods: Fifteen healthy nonsmoker volunteers were exposed to three different levels of sidestream cigarette smoke under controlled conditions. EBC was repeatedly collected before, during, and 1 and 2 hr after exposure. Exposure variables were measured by direct reading instruments and by active sampling. The different EBC samples were analyzed for particle number concentration (light-scattering-based method) and for selected compounds considered oxidative stress markers. Results: Subjects were exposed to an average airborne concentration up to 4.3×10(5) particles/cm(3) (average geometric size ∼60-80 nm). Up to 10×10(8) particles/mL could be measured in the collected EBC with a broad size distribution (50(th) percentile ∼160 nm), but these biological concentrations were not related to the exposure level of cigarette smoke particles. Although H2O2 and MDA concentrations in EBC increased during exposure, only H2O2 showed a transient normalization 1 hr after exposure and increased afterward. In contrast, MDA levels stayed elevated during the 2 hr post exposure. Conclusions: The use of diffusion light scattering for particle counting proved to be sufficiently sensitive to detect objects in EBC, but lacked the specificity for carbonaceous tobacco smoke particles. Our results suggest two phases of oxidation markers in EBC: first, the initial deposition of particles and gases in the lung lining liquid, and later the start of oxidative stress with associated cell membrane damage. Future studies should extend the follow-up time and should remove gases or particles from the air to allow differentiation between the different sources of H2O2 and MDA.
Resumo:
We have characterized the maturation, co- and posttranslational modifications, and functional properties of the alpha(1B)-adrenergic receptor (AR) expressed in different mammalian cells transfected using conventional approaches or the Semliki Forest virus system. We found that the alpha(1B)-AR undergoes N-linked glycosylation as demonstrated by its sensitivity to endoglycosidases and by the effect of tunicamycin on receptor maturation. Pulse-chase labeling experiments in BHK-21 cells demonstrate that the alpha(1B)-AR is synthesized as a 70 kDa core glycosylated precursor that is converted to the 90 kDa mature form of the receptor with a half-time of approximately 2 h. N-Linked glycosylation of the alpha(1B)-AR occurs at four asparagines on the N-terminus of the receptor. Mutations of the N-linked glycosylation sites did not have a significant effect on receptor function or expression. Surprisingly, receptor mutants lacking N-linked glycosylation migrated as heterogeneous bands in SDS-PAGE. Our findings demonstrate that N-linked glycosylation and phosphorylation, but not palmitoylation or O-linked glycosylation, contribute to the structural heterogeneity of the alpha(1B)-AR as it is observed in SDS-PAGE. The modifications found are similar in the different mammalian expression systems explored. Our findings indicate that the Semliki Forest virus system can provide large amounts of functional and fully glycosylated alpha(1B)-AR protein suitable for biochemical and structural studies. The results of this study contribute to elucidate the basic steps involved in the processing of G protein-coupled receptors as well as to optimize strategies for their overexpression.
Resumo:
INTRODUCTION: Calcium-containing (CaC) crystals, including basic calcium phosphate (BCP) and calcium pyrophosphate dihydrate (CPP), are associated with destructive forms of osteoarthritis (OA). We assessed their distribution and biochemical and morphologic features in human knee OA cartilage. METHODS: We prospectively included 20 patients who underwent total knee replacement (TKR) for primary OA. CaC crystal characterization and identification involved Fourier-transform infra-red spectrometry and scanning electron microscopy of 8 to 10 cartilage zones of each knee, including medial and lateral femoral condyles and tibial plateaux and the intercondyle zone. Differential expression of genes involved in the mineralization process between cartilage with and without calcification was assessed in samples from 8 different patients by RT-PCR. Immunohistochemistry and histology studies were performed in 6 different patients. RESULTS: Mean (SEM) age and body mass index of patients at the time of TKR was 74.6 (1.7) years and 28.1 (1.6) kg/m², respectively. Preoperative X-rays showed joint calcifications (chondrocalcinosis) in 4 cases only. The medial femoro-tibial compartment was the most severely affected in all cases, and mean (SEM) Kellgren-Lawrence score was 3.8 (0.1). All 20 OA cartilages showed CaC crystals. The mineral content represented 7.7% (8.1%) of the cartilage weight. All patients showed BCP crystals, which were associated with CPP crystals for 8 joints. CaC crystals were present in all knee joint compartments and in a mean of 4.6 (1.7) of the 8 studied areas. Crystal content was similar between superficial and deep layers and between medial and femoral compartments. BCP samples showed spherical structures, typical of biological apatite, and CPP samples showed rod-shaped or cubic structures. The expression of several genes involved in mineralization, including human homolog of progressive ankylosis, plasma-cell-membrane glycoprotein 1 and tissue-nonspecific alkaline phosphatase, was upregulated in OA chondrocytes isolated from CaC crystal-containing cartilages. CONCLUSIONS: CaC crystal deposition is a widespread phenomenon in human OA articular cartilage involving the entire knee cartilage including macroscopically normal and less weight-bearing zones. Cartilage calcification is associated with altered expression of genes involved in the mineralisation process.