960 resultados para C-terminal Fragment
Resumo:
Respiratory syncytial virus (RSV) is recognized as the leading cause of nosocomial respiratory infection among hematopoietic stem cell transplant (HSCT) recipients, causing considerable morbidity and mortality. RSV is easily transmitted by contact with contaminated surfaces, and in HSCT units, more than 50% of RSV infections have been characterized as of nosocomial origin. From April 2001 to October 2002, RSV was identified by direct immunofluorescent assay in 42 symptomatic HSCT recipients. Seven RSV strains from 2001 and 12 RSV strains from 2002 were sequenced. RNA extraction, cDNA synthesis, and seminested polymerase chain reaction (PCR) with primers complementary to RSV genes G and F were pet-formed. PCR products were analyzed by nucleotide sequencing of the C-terminal region of gene G for typing (in group A or B). Of the 7 strains analyzed in 2001, only 2 belonged to group B; the other 5 belonged to group A. Of these 7 strains, 3 were identical and were from recipients receiving outpatient care. In 2002, of the 12 strains analyzed, 3 belonged to group A and the other 9 belonged to group B. Of these 9 strains, 7 were genetically identical and were also from recipients receiving outpatient care. Therefore, multiple strains of RSV cocirculated in the hematopoietic stem cell transplant units (ward and outpatient units) between 2001 and 2002. Nosocomial transmission was more likely to occur at the HSCT outpatient unit than in the HSCT ward. Infection control practices should also be implemented in the outpatient setting.
Resumo:
The cytoplasmic and nuclear protein Ki- 1 / 57 was first identified in malignant cells from Hodgkin`s lymphoma. Despite studies showing its phosphorylation, arginine methylation, and interaction with several regulatory proteins, the functional role of Ki- 1 / 57 in human cells remains to be determined. Here, we investigated the relationship of Ki- 1 / 57 with RNA functions. Through immunoprecipitation assays, we verified the association of Ki- 1 / 57 with the endogenous splicing proteins hnRNPQ and SFRS9 in HeLa cell extracts. We also found that recombinant Ki- 1 / 57 was able to bind to a poly- U RNA probe in electrophoretic mobility shift assays. In a classic splicing test, we showed that Ki- 1 / 57 can modify the splicing site selection of the adenoviral E1A minigene in a dose- dependent manner. Further confocal and. uorescence microscopy analysis revealed the localization of enhanced green. uorescent protein - Ki- 1 / 57 to nuclear bodies involved in RNA processing and or small nuclear ribonucleoprotein assembly, depending on the cellular methylation status and its N- terminal region. In summary, our findings suggest that Ki- 1 / 57 is probably involved in cellular events related to RNA functions, such as pre- mRNA splicing.
Resumo:
Transposon elements are important tools for gene function analysis, for example they can be used to easily create genome-wide collections of insertion mutants. Transposons may also carry sequences coding for an epitope or fluorescent marker useful for protein expression and localization analysis. We have developed three new Tn5-based transposons that incorporate a GFP (green fluorescent protein) coding sequence to generate fusion proteins in the important fungal pathogen Candida albicans. Each transposon also contains the URA3 and Kan(R) genes for yeast and bacterial selection, respectively. After in vitro transposition, the insertional allele is transferred to the chromosomal locus by homologous recombination. Transposons Tn5-CaGFP and Tn5-CaGFP-URA3:FLIP can generate C-terminal truncated GFP fusions. A URA3 flipper recycling cassette was incorporated into the transposon Th5-CaGFP-UFRA3:FLIP. After the induction of Flip recombinase to excise the marker, the heterozygous strain is transformed again in order to obtain a GFP-tagged homozygous strains. In the Tn5-CaGFP-FL transposon the markers are flanked by a rare-cutting enzyme. After in vitro transposition into a plasmid-borne target gene, the markers are eliminated by restriction digestion and religation, resulting in a construct coding for full-length GFP-fusion proteins. This transposon can generate plasmid libraries of GFP insertions in proteins where N- or C-terminal tagging may alter localization. We tested our transposon system by mutagenizing the essential septin CDC3 gene. The results indicate that the Cdc3 C-terminal extension is important for correct septin filament assembly. The transposons described here provide a new system to obtain global gene expression and protein localization data in C. albicans. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
Growth hormone (GH) influences bone mass maintenance. However, the consequences of lifetime isolated GH deficiency (IGHD) on bone are not well established. We assessed the bone status and the effect of 6 months of GH replacement in GH-naive adults with IGHD due to a homozygous mutation of the GH-releasing hormone (GHRH)-receptor gene (GHRHR). We studied 20 individuals (10 men) with IGHD at baseline, after 6 months of depot GH treatment, and 6 and 12 months after discontinuation of GH. Quantitative ultrasound (QUS) of the heel was performed and serum osteocalcin (OC) and C-terminal cross-linking telopeptide of type I collagen (ICTP) were measured. QUS was also performed at baseline and 12 months later in a group of 20 normal control individuals (CO), who did not receive GH treatment. At baseline, the IGHD group had a lower T-score on QUS than CO (-1.15 +/- 0.9 vs. -0.07 +/- 0.9, P < 0.001). GH treatment improved this parameter, with improvement persisting for 12 months post-treatment (T-score for IGHD = -0.59 +/- 0.9, P < 0.05). GH also caused an increase in serum OC (baseline vs. pGH, P < 0.001) and ICTP (baseline vs. pGH, P < 0.01). The increase in OC was more marked during treatment and its reduction was slower after GH discontinuation than in ICTP. These data suggest that lifetime severe IGHD is associated with significant reduction in QUS parameters, which are partially reversed by short-term depot GH treatment. The treatment induces a biochemical pattern of bone anabolism that persists for at least 6 months after treatment discontinuation.
Resumo:
Rabies virus (RABV) isolates from two species of canids and three species of bats were analyzed by comparing the C-terminal region of the G gene and the G-L intergenic region of the virus genome. Intercluster identities for the genetic sequences of the isolates showed both regions to be poorly conserved. Phylogenetic trees were generated by the neighbor-joining and maximum parsimony methods, and the results were found to agree between the two methods for both regions. Putative amino acid sequences obtained from the G gene were also analyzed, and genetic markers were identified. Our results suggest that different genetic lineages of RABV are adapted to different animal species in Brazil.
Resumo:
Solid-state C-13 NMR spectroscopy was used to investigate the three-dimensional structure of melittin as lyophilized powder and in ditetradecylphosphatidylcholine (DTPC) membranes. The distance between specifically labeled carbons in analogs [1-C-13]Gly3-[2-C-13]Ala4, [1-C-13]Gly3-[2-C-13]Leu6, [1-C-13]Leu13-[2-C-13]Ala15, [2-C-13]Leu13-[1-C-13]Ala15, and [1-C-13]Leu13-[2-C-13]Leu16 was measured by rotational resonance. As expected, the internuclear distances measured in [1-C-13]Gly3-[2-C-13]Ala4 and [1-C-13]Gly3-[2-C-13]Leu6 were consistent with alpha -helical structure in the N-terminus irrespective of environment. The Internuclear distances measured in [1-C-13]Leu13-[2-C-13]Ala15, [2-C-13]Leu13-[1-C-13]Ala15, and [1-C-13]Leu13-[2-C-13]Leu16 revealed, via molecular modeling, some dependence upon environment for conformation in the region of the bend in helical structure induced by Pro14. A slightly larger interhelical angle between the N- and C-terminal helices was indicated for peptide in dry or hydrated gel state DTPC (139 degrees -145 degrees) than in lyophilized powder (121 degrees -139 degrees) or crystals (129 degrees). The angle, however, is not as great as deduced for melittin in aligned bilayers of DTPC in the liquid-crystalline state (similar to 160 degrees) (R. Smith, F. Separovic, T. J. Milne, A. Whittaker, F. M. Bennett, B. A. Cornell, and A. Makriyannis, 1994, J. Mol, Biol 241:456-466). The study illustrates the utility of rotational resonance in determining local structure within peptide-lipid complexes.
Resumo:
We have isolated a novel family of insect-selective neurotoxins that appear to be the most potent blockers of insect voltage-gated calcium channels reported to date. These toxins display exceptional phylogenetic specificity, with at least a 10,000-fold preference for insect versus vertebrate calcium channels. The structure of one of the toxins reveals a highly structured, disulfide-rich core and a structurally disordered C-terminal extension that is essential for channel blocking activity. Weak structural/functional homology with omega -agatoxin-IVA/B, the prototypic inhibitor of vertebrate P-type calcium channels, suggests that these two toxin families might share a similar mechanism of action despite their vastly different phylogenetic specificities.
Resumo:
The overlapping expression profile of MEF2 and the class-II histone deacetylase, HDAC7, led us to investigate the functional interaction and relationship between these regulatory proteins. HDAC7 expression inhibits the activity of MEF2 (-A, -C, and -D), and in contrast MyoD and Myogenin activities are not affected. Glutathione S-transferase pulldown and immunoprecipitation demonstrate that the repression mechanism involves direct interactions between MEF2 proteins and HDAC7 and is associated with the ability of MEF2 to interact with the N-terminal 121 amino acids of HDAC7 that encode repression domain 1. The MADS domain of MEF2 mediates the direct interaction of MEF2 with HDAC7, MEF2 inhibition by HDAC7 is dependent on the N-terminal repression domain and surprisingly does not involve the C-terminal deacetylase domain. HDAC7 interacts with CtBP and other class-I and -II HDACs suggesting that silencing of MEF2 activity involves corepressor recruitment. Furthermore, we show that induction of muscle differentiation by serum withdrawal leads to the translocation of HDAC7 from the nucleus into the cytoplasm. This work demonstrates that HDAC7 regulates the function of MEF2 proteins and suggests that this class-II HDAC regulates this important transcriptional (and pathophysiological) target in heart and muscle tissue. The nucleocytoplasmic trafficking of HDAC7 and other class-II HDACs during myogenesis provides an ideal mechanism for the regulation of HDAC targets during mammalian development and differentiation.
Isolation and identification of the toxic peptides from Lophyrotoma zonalis (Pergidae) sawfly larvae
Resumo:
The broad-leaved paper bark tree Melaleuca quinquenervia (Cav) (Myrtaceae) was introduced into Florida (USA) early in this century it has proliferated to such an extent that urgent measures are now required to control it. The sawfly Lophyrotoma zonalis (Pergidae) has been introduced as a possible biological control agent due to its ability to defoliate M. quinquenervia. Because toxic D-amino acid- containing peptides have been isolated from some sawfly species, L. zonalis larvae were processed using the previously reported method for the recovery of these compounds. The toxins lophyrotomin (as the free C-terminal acid) and a mixture of pergidin and Val(4)-pergidin were isolated at 0.36 and 0.43% yield of the dried larvae, respectively. Both compounds when dosed intraperitoneally to C57/B16 male mice were hepatotoxic with lowest lethal doses of 8 and 32 mg/kg, respectively. The pathology of the liver was different for each compound, with the lophyrotomin free acid causing a periportal haemorrhagic necrosis and the pergidin causing a periacinar coagulative necrosis. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
A two-domain portion of the proteinase inhibitor precursor from Nicotiana alata (NaProPI) has been expressed and its structure determined by NMR spectroscopy. NaProPI contains six almost identical 53 amino acid repeats that fold into six highly similar domains; however, the sequence repeats do nut coincide with the structural domains. Five of the structural domains comprise the C-terminal portion of one repeat and the N-terminal portion of the next. The sixth domain contains the C-terminal portion of the sixth repeat and the N-terminal portion of the first repeat. Disulphide bonds link these C and N-terminal fragments to generate the clasped-bracelet fold of NaProPI. The three-dimensional structure of NaProPI is not known, but it is conceivable that adjacent domains in NaProPI interact to generate the circular bracelet with the N and C termini in close enough proximity to facilitate formation of the disulphide bonds that form the clasp The expressed protein, examined in the current study, comprises residues 25-135 of NaProPI and encompasses the first two contiguous structural domains, namely the chymotrypsin inhibitor C1 and the trypsin inhibitor T1, joined by a five-residue linker, and is referred to as C1-T1. The tertiary structure of each domain in C1-T1 is identical to that found in the isolated inhibitors. However, no nuclear Overhauser effect contacts are observed between the two domains and the five-residue linker adopts an extended conformation. The absence of interactions between the domains indicates that adjacent domains do not specifically interact to drive the circularisation of NaProPI. These results are in agreement with recent data which describe similar PI precursors from other members of the Solanaceae having two, three, or four repeats. The lack of strong interdomain association is likely to be important for the function of individual inhibitors by ensuring that there is no masking of reactive sites upon release from the precursor. (C) 2001 Academic Press.
Resumo:
The NS5 protein of the flavivirus Kunjin (KUN) contains conserved sequence motifs characteristic of RNA-dependent RNA polymerase (RdRp) activity. To investigate this activity in vitro, recombinant NS5 proteins with C-terminal (NS5CHis) and N-terminal (NS5NHis) hexahistidine tags were produced in baculovirus-infected insect cells and purified to near homogeneity by nickel affinity chromatography. Purified NS5CHis exhibited RdRp activity with both specific (9 kb KUN replicon) and non-specific (8.3 kb Semliki Forest virus replicon) RNA templates; this activity did not require the presence of additional viral and/or cellular cofactors. RdRp activity of purified NS5NHis protein was reduced in comparison to NS5CHis, while purified NS5NHis incorporating a GDD -> GVD mutation within the polymerase active site (NS5GVD) lacked RdRp activity. RNase A digestion of the RdRp reaction products indicated that they were double-stranded and of a similar size to the KUN replicative form produced in Vero cells, thus demonstrating that the KUN NS5 protein has an intrinsic, albeit low and non-specific RdRp activity in vitro, similar to that reported for recombinant RdRp of other flaviviruses. However, in contrast to RNA polymerases of other Flavivirus species, purified KUN NS5 polymerase produced a single, full-length replicon RNA product, thus demonstrating efficient processivity. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
The cyclic C5a receptor antagonist, phenylalanine [L-ornithine-proline-D-cyclohexylalanine-tryptophan-arginine] (F-[OPchaWR]), has similar to 1000-fold less affinity for the C5a receptor (C5aR) on murine polymorphonuclear leukocytes than on human. Analysis of C5aR from different species shows that a possible cause of this difference is the variation in the sequence of the first extracellular loop of the receptor. The mouse receptor contains Y at a position analogous to P-103 in the human receptor, and D at G(105). To test this hypothesis, we expressed human C5aR mutants ((PY)-Y-103, G(105)D and the double mutant, (PY)-Y-103/G(105)D) in RBL-2H3 cells and investigated the effects of these mutations on binding affinity and receptor activation. All three mutant receptors had a higher affinity for human C5a than the wild-type receptor, but showed no significant difference in the ability of F-[OPchaWR] to inhibit human C5a binding. However, all of the mutant receptors had substantially lower affinities for the weak agonist, C5a des Arg(74) (C5adR(74)), and two altered receptors (G(105)D and (PY)-Y-103/G(105)D) had much lower affinities for the C-terminal C5a agonist peptide analogue, L-tyrosine-serine-phenylalanine-lysine-proline-methionine-proline-leucine-D-alanine-arginine (YSFKPMPLaR). Although it is unlikely that differences at these residues are responsible for variations in the potency of F-[OPchaWR] across species, residues in the first extracellular loop are clearly involved in the recognition of both C5a and C5a agonists. The complex effects of mutating these residues on the affinity and response to C5a, C5adR(74), and the peptide analogues provide evidence of different binding modes for these ligands on the C5aR. (C) 2001 Elsevier Science Inc. All rights reserved.
Resumo:
Numerous studies on the relationship between the structure and function of peptide agonists derived from the biologically active, C-terminal region of human C5a anaphylatoxin have been reported over the past decade. These studies have been performed with the objective of parlaying this structure-function information into the design of peptide/peptidomimetic modulators of C5a receptor (C5aR)-mediated function. In this review, we describe a rational approach for the development of conformationally biased, decapeptide agonists of C5a and described how these stabilized and specific conformational features relate to the expression of specific C5a-like activities in vitro and in vivo. The therapeutic potential of such response-selective C5a agonists is discussed and underscored by the results of one such response-selective C5a agonist that was used in vivo as an effective molecular adjuvant capable of generating antigen-specific humoral and cellular immune responses. Finally, we describe the synthesis of a new generation of highly response-selective, conformationally biased C5a agonist and discuss the in vitro and in vivo biologic results that so indicate this biologic selectivity.
Resumo:
There is increasing evidence that heterotrimeric G-proteins (G-proteins) are involved in many plant processes including phytohormone response, pathogen defence and stomatal control. In animal systems, each of the three G-protein subunits belong to large multigene families; however, few subunits have been isolated from plants. Here we report the cloning of a second plant G-protein γ-subunit (AGG2) from Arabidopsis thaliana. The predicted AGG2 protein sequence shows 48% identity to the first identified Arabidopsis Gγ-subunit, AGG1. Furthermore, AGG2 contains all of the conserved characteristics of γ-subunits including a small size (100 amino acids, 11.1 kDa), C-terminal CAAX box and a N-terminal α-helix region capable of forming a coiled-coil interaction with the β-subunit. A strong interaction between AGG2 and both the tobacco (TGB1) and Arabidopsis (AGB1) β-subunits was observed in vivo using the yeast two-hybrid system. The strong association between AGG2 and AGB1 was confirmed in vitro. Southern and Northern analyses showed that AGG2 is a single copy gene in Arabidopsis producing two transcripts that are present in all tissues tested. The isolation of a second γ-subunit from A. thaliana indicates that plant G-proteins, like their mammalian counterparts, may form different heterotrimer combinations that presumably regulate multiple signal transduction pathways.
Resumo:
Although the malaria parasite was discovered more than 120 years ago, it is only during the past 20 years, following the cloning of malaria genes, that we have been able to think rationally about vaccine design and development. Effective vaccines for malaria could interrupt the life cycle of the parasite at different stages in the human host or in the mosquito. The purpose of this review is to outline the challenges we face in developing a vaccine that will limit growth of the parasite during the stage within red blood cells - the stage responsible for all the symptoms and pathology of malaria. More than 15 vaccine trials have either been completed or are in progress, and many more are planned. Success in current trials could lead to a vaccine capable of saving more than 2 million lives per year.