994 resultados para Bulk segregant analysis
Resumo:
This work evaluates the spatial distribution of normalised rates of droplet breakage and droplet coalescence in liquidliquid dispersions maintained in agitated tanks at operation conditions normally used to perform suspension polymerisation reactions. Particularly, simulations are performed with multiphase computational fluid dynamics (CFD) models to represent the flow field in liquidliquid styrene suspension polymerisation reactors for the first time. CFD tools are used first to compute the spatial distribution of the turbulent energy dissipation rates (e) inside the reaction vessel; afterwards, normalised rates of droplet breakage and particle coalescence are computed as functions of e. Surprisingly, multiphase simulations showed that the rates of energy dissipation can be very high near the free vortex surfaces, which has been completely neglected in previous works. The obtained results indicate the existence of extremely large energy dissipation gradients inside the vessel, so that particle breakage occurs primarily in very small regions that surround the impeller and the free vortex surface, while particle coalescence takes place in the liquid bulk. As a consequence, particle breakage should be regarded as an independent source term or a boundary phenomenon. Based on the obtained results, it can be very difficult to justify the use of isotropic assumptions to formulate particle population balances in similar systems, even when multiple compartment models are used to describe the fluid dynamic behaviour of the agitated vessel. (C) 2011 Canadian Society for Chemical Engineering
Resumo:
The objective of this study was to compare the BLUP selection method with different selection strategies in F-2:4 and assess the efficiency of this method on the early choice of the best common bean (Phaseolus vulgaris) lines. Fifty-one F-2:4 progenies were produced from a cross between the CVIII8511 x RP-26 lines. A randomized block design was used with 20 replications and one-plant field plots. Character data on plant architecture and grain yield were obtained and then the sum of the standardized variables was estimated for simultaneous selection of both traits. Analysis was carried out by mixed models (BLUP) and the least squares method to compare different selection strategies, like mass selection, stratified mass selection and between and within progeny selection. The progenies selected by BLUP were assessed in advanced generations, always selecting the greatest and smallest sum of the standardized variables. Analyses by the least squares method and BLUP procedure ranked the progenies in the same way. The coincidence of the individuals identified by BLUP and between and within progeny selection was high and of the greatest magnitude when BLUP was compared with mass selection. Although BLUP is the best estimator of genotypic value, its efficiency in the response to long term selection is not different from any of the other methods, because it is also unable to predict the future effect of the progenies x environments interaction. It was inferred that selection success will always depend on the most accurate possible progeny assessment and using alternatives to reduce the progenies x environments interaction effect.
Resumo:
Mastitis is the most common infectious disease affecting dairy cattle; in addition, it remains the most economically important disease of dairy industries around the world. Streptococcus agalactiae, a contagious pathogen associated with subclinical mastitis, is highly infectious. This bacterium can cause an increase in bulk tank bacterial counts (BTBC) and bulk tank somatic cell counts (BTSCC). The microbiological identification of S. agalactiae in samples from bulk tanks is an auxiliary method to control contagious mastitis. Thus, there are some limitations for time-consuming cultures or identification methods and additional concerns about the conservation and transport of samples. Bulk tank samples from 247 dairy farms were cultured and compared through polymerase chain reaction (PCR), directed to 16S rRNA genes of S. agalactiae, followed by BTBC and S. agalactiae isolation. The mean value of BTBC was 1.08 x 10(6) CFU mL(-1) and the bacterium was identified through the microbiological method in 98 (39.7%; CI95% = 33.8-45.9%) and through PCR in 110 (44.5%; CI95% = 38.5-50.8%) samples. Results indicated sensitivity of 0.8571 +/- 0.0353 (CI95% = 0.7719-0.9196) and specificity of 0.8255 +/- 0.0311 (CI95% = 0.7549-0.8827). The lack of significant difference between microbiological and molecular results (kappa = 0.6686 +/- 0.0477 and CI95% = 0.5752-0.7620) indicated substantial agreement between the methods. This suggests that PCR can be used for bulk tank samples to detect contagious mastitis caused by S. agalactiae. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The Apiai gabbro-norite is a massive fine-grained Neoproterozoic intrusion emplaced in a core of synformal structure that deforms low-grade marine metasedimentary rocks of the Ribeira Belt of south-eastern Brazil. The lack of visible magmatic layering or any internal fabric has been a major limitation in deciding whether the emplacement occurred before or after the regional folding. To assist in the tectonic interpretations, we combine low-field anisotropy of magnetic susceptibility (AMS) and silicate shape preferred orientation (SPO) to reveal the internal structure of the mafic intrusion. Magnetic data indicate a mean susceptibility of about 10(-2) SI and a mean anisotropy degree (P) of about 1.08, essentially yielded by titanomagnetite. The magnetic and silicate foliations for P >= 1.10 are parallel to each other, while the lineations tend to scatter on the foliation plane, in agreement with the dominant oblate symmetry of the AMS and SPO ellipsoids. For lower P values, the magnetic and silicate fabrics vary from coaxial to oblique, and for P <= 1.05, their shapes and orientations can be quite distinct. The crystal size distribution (CSD) of plagioclase for P > 1.05 is log linear, in agreement with a bulk simple crystallisation history. These results combined show that for a strong SPO, corresponding to a magnetic anisotropy above 1.10, AMS is a reliable indicator of the magmatic fabric. They indicate that the Apiai gabbro-norite consists of sill-like body that was inclined gently to the north by the regional folding.
Resumo:
Questa dissertazione esamina le sfide e i limiti che gli algoritmi di analisi di grafi incontrano in architetture distribuite costituite da personal computer. In particolare, analizza il comportamento dell'algoritmo del PageRank così come implementato in una popolare libreria C++ di analisi di grafi distribuiti, la Parallel Boost Graph Library (Parallel BGL). I risultati qui presentati mostrano che il modello di programmazione parallela Bulk Synchronous Parallel è inadatto all'implementazione efficiente del PageRank su cluster costituiti da personal computer. L'implementazione analizzata ha infatti evidenziato una scalabilità negativa, il tempo di esecuzione dell'algoritmo aumenta linearmente in funzione del numero di processori. Questi risultati sono stati ottenuti lanciando l'algoritmo del PageRank della Parallel BGL su un cluster di 43 PC dual-core con 2GB di RAM l'uno, usando diversi grafi scelti in modo da facilitare l'identificazione delle variabili che influenzano la scalabilità. Grafi rappresentanti modelli diversi hanno dato risultati differenti, mostrando che c'è una relazione tra il coefficiente di clustering e l'inclinazione della retta che rappresenta il tempo in funzione del numero di processori. Ad esempio, i grafi Erdős–Rényi, aventi un basso coefficiente di clustering, hanno rappresentato il caso peggiore nei test del PageRank, mentre i grafi Small-World, aventi un alto coefficiente di clustering, hanno rappresentato il caso migliore. Anche le dimensioni del grafo hanno mostrato un'influenza sul tempo di esecuzione particolarmente interessante. Infatti, si è mostrato che la relazione tra il numero di nodi e il numero di archi determina il tempo totale.
Resumo:
In such territories where food production is mostly scattered in several small / medium size or even domestic farms, a lot of heterogeneous residues are produced yearly, since farmers usually carry out different activities in their properties. The amount and composition of farm residues, therefore, widely change during year, according to the single production process periodically achieved. Coupling high efficiency micro-cogeneration energy units with easy handling biomass conversion equipments, suitable to treat different materials, would provide many important advantages to the farmers and to the community as well, so that the increase in feedstock flexibility of gasification units is nowadays seen as a further paramount step towards their wide spreading in rural areas and as a real necessity for their utilization at small scale. Two main research topics were thought to be of main concern at this purpose, and they were therefore discussed in this work: the investigation of fuels properties impact on gasification process development and the technical feasibility of small scale gasification units integration with cogeneration systems. According to these two main aspects, the present work was thus divided in two main parts. The first one is focused on the biomass gasification process, that was investigated in its theoretical aspects and then analytically modelled in order to simulate thermo-chemical conversion of different biomass fuels, such as wood (park waste wood and softwood), wheat straw, sewage sludge and refuse derived fuels. The main idea is to correlate the results of reactor design procedures with the physical properties of biomasses and the corresponding working conditions of gasifiers (temperature profile, above all), in order to point out the main differences which prevent the use of the same conversion unit for different materials. At this scope, a gasification kinetic free model was initially developed in Excel sheets, considering different values of air to biomass ratio and the downdraft gasification technology as particular examined application. The differences in syngas production and working conditions (process temperatures, above all) among the considered fuels were tried to be connected to some biomass properties, such elementary composition, ash and water contents. The novelty of this analytical approach was the use of kinetic constants ratio in order to determine oxygen distribution among the different oxidation reactions (regarding volatile matter only) while equilibrium of water gas shift reaction was considered in gasification zone, by which the energy and mass balances involved in the process algorithm were linked together, as well. Moreover, the main advantage of this analytical tool is the easiness by which the input data corresponding to the particular biomass materials can be inserted into the model, so that a rapid evaluation on their own thermo-chemical conversion properties is possible to be obtained, mainly based on their chemical composition A good conformity of the model results with the other literature and experimental data was detected for almost all the considered materials (except for refuse derived fuels, because of their unfitting chemical composition with the model assumptions). Successively, a dimensioning procedure for open core downdraft gasifiers was set up, by the analysis on the fundamental thermo-physical and thermo-chemical mechanisms which are supposed to regulate the main solid conversion steps involved in the gasification process. Gasification units were schematically subdivided in four reaction zones, respectively corresponding to biomass heating, solids drying, pyrolysis and char gasification processes, and the time required for the full development of each of these steps was correlated to the kinetics rates (for pyrolysis and char gasification processes only) and to the heat and mass transfer phenomena from gas to solid phase. On the basis of this analysis and according to the kinetic free model results and biomass physical properties (particles size, above all) it was achieved that for all the considered materials char gasification step is kinetically limited and therefore temperature is the main working parameter controlling this step. Solids drying is mainly regulated by heat transfer from bulk gas to the inner layers of particles and the corresponding time especially depends on particle size. Biomass heating is almost totally achieved by the radiative heat transfer from the hot walls of reactor to the bed of material. For pyrolysis, instead, working temperature, particles size and the same nature of biomass (through its own pyrolysis heat) have all comparable weights on the process development, so that the corresponding time can be differently depending on one of these factors according to the particular fuel is gasified and the particular conditions are established inside the gasifier. The same analysis also led to the estimation of reaction zone volumes for each biomass fuel, so as a comparison among the dimensions of the differently fed gasification units was finally accomplished. Each biomass material showed a different volumes distribution, so that any dimensioned gasification unit does not seem to be suitable for more than one biomass species. Nevertheless, since reactors diameters were found out quite similar for all the examined materials, it could be envisaged to design a single units for all of them by adopting the largest diameter and by combining together the maximum heights of each reaction zone, as they were calculated for the different biomasses. A total height of gasifier as around 2400mm would be obtained in this case. Besides, by arranging air injecting nozzles at different levels along the reactor, gasification zone could be properly set up according to the particular material is in turn gasified. Finally, since gasification and pyrolysis times were found to considerably change according to even short temperature variations, it could be also envisaged to regulate air feeding rate for each gasified material (which process temperatures depend on), so as the available reactor volumes would be suitable for the complete development of solid conversion in each case, without even changing fluid dynamics behaviour of the unit as well as air/biomass ratio in noticeable measure. The second part of this work dealt with the gas cleaning systems to be adopted downstream the gasifiers in order to run high efficiency CHP units (i.e. internal engines and micro-turbines). Especially in the case multi–fuel gasifiers are assumed to be used, weightier gas cleaning lines need to be envisaged in order to reach the standard gas quality degree required to fuel cogeneration units. Indeed, as the more heterogeneous feed to the gasification unit, several contaminant species can simultaneously be present in the exit gas stream and, as a consequence, suitable gas cleaning systems have to be designed. In this work, an overall study on gas cleaning lines assessment is carried out. Differently from the other research efforts carried out in the same field, the main scope is to define general arrangements for gas cleaning lines suitable to remove several contaminants from the gas stream, independently on the feedstock material and the energy plant size The gas contaminant species taken into account in this analysis were: particulate, tars, sulphur (in H2S form), alkali metals, nitrogen (in NH3 form) and acid gases (in HCl form). For each of these species, alternative cleaning devices were designed according to three different plant sizes, respectively corresponding with 8Nm3/h, 125Nm3/h and 350Nm3/h gas flows. Their performances were examined on the basis of their optimal working conditions (efficiency, temperature and pressure drops, above all) and their own consumption of energy and materials. Successively, the designed units were combined together in different overall gas cleaning line arrangements, paths, by following some technical constraints which were mainly determined from the same performance analysis on the cleaning units and from the presumable synergic effects by contaminants on the right working of some of them (filters clogging, catalysts deactivation, etc.). One of the main issues to be stated in paths design accomplishment was the tars removal from the gas stream, preventing filters plugging and/or line pipes clogging At this scope, a catalytic tars cracking unit was envisaged as the only solution to be adopted, and, therefore, a catalytic material which is able to work at relatively low temperatures was chosen. Nevertheless, a rapid drop in tars cracking efficiency was also estimated for this same material, so that an high frequency of catalysts regeneration and a consequent relevant air consumption for this operation were calculated in all of the cases. Other difficulties had to be overcome in the abatement of alkali metals, which condense at temperatures lower than tars, but they also need to be removed in the first sections of gas cleaning line in order to avoid corrosion of materials. In this case a dry scrubber technology was envisaged, by using the same fine particles filter units and by choosing for them corrosion resistant materials, like ceramic ones. Besides these two solutions which seem to be unavoidable in gas cleaning line design, high temperature gas cleaning lines were not possible to be achieved for the two larger plant sizes, as well. Indeed, as the use of temperature control devices was precluded in the adopted design procedure, ammonia partial oxidation units (as the only considered methods for the abatement of ammonia at high temperature) were not suitable for the large scale units, because of the high increase of reactors temperature by the exothermic reactions involved in the process. In spite of these limitations, yet, overall arrangements for each considered plant size were finally designed, so that the possibility to clean the gas up to the required standard degree was technically demonstrated, even in the case several contaminants are simultaneously present in the gas stream. Moreover, all the possible paths defined for the different plant sizes were compared each others on the basis of some defined operational parameters, among which total pressure drops, total energy losses, number of units and secondary materials consumption. On the basis of this analysis, dry gas cleaning methods proved preferable to the ones including water scrubber technology in al of the cases, especially because of the high water consumption provided by water scrubber units in ammonia adsorption process. This result is yet connected to the possibility to use activated carbon units for ammonia removal and Nahcolite adsorber for chloride acid. The very high efficiency of this latter material is also remarkable. Finally, as an estimation of the overall energy loss pertaining the gas cleaning process, the total enthalpy losses estimated for the three plant sizes were compared with the respective gas streams energy contents, these latter obtained on the basis of low heating value of gas only. This overall study on gas cleaning systems is thus proposed as an analytical tool by which different gas cleaning line configurations can be evaluated, according to the particular practical application they are adopted for and the size of cogeneration unit they are connected to.
Resumo:
When non-adsorbing polymers are added to an isotropic suspension of rod-like colloids, the colloids effectively attract each other via depletion forces. Monte Carlo simulations were performed to study the phase diagram of such rod-polymer mixtures. The colloidal rods were modelled as hard spherocylinders; the polymers were described as spheres of the same diameter as the rods. The polymers may overlap with no energy cost, while overlap of polymers and rods is forbidden. In this thesis the emphasis was on the depletion effects caused by the addition of spheres on the isotropic phase of rod-like particles. Although most of the present experimental studies consider systems close to or beyond the isotropic-nematic transition, the isotropic phase with depletion interactions turns out to be a not less interesting topic. First, the percolation problem was studied in canonical simulations of a system of hard rods and soft spheres, where the amount of depletant was kept low to prevent phase separation of the mixture. The lowering of the percolation threshold seen in experiment is confirmed to be due to the depletion interactions. The local changes in the structure of the fluid of rods, which were measured in the simulations, indicated that the depletion forces enhance local alignment and aggregation of the rods. Then, the phase diagram of isotropic-isotropic demixing of short spherocylinders was calculated using grand canonical ensemble simulations with successive umbrella sampling. Finite size scaling analysis allowed to estimate the location of the critical point. Also, estimates for the interfacial tension between the coexisting isotropic phases and analyses of its power-law behaviour on approach of the critical point are presented. The obtained phase diagram was compared to the predictions of the free volume theory. After an analysis of the bulk, the phase behaviour in confinement was studied. The critical point of gas-liquid demixing is shifted to higher concentrations of rods and smaller concentrations of spheres due to the formation of an orientationally ordered surface film. If the separation between the walls becomes very small, the critical point is shifted back to smaller concentrations of rods because the surface film breaks up. A method to calculate the contact angle of the liquid-gas interface with the wall is introduced and the wetting behaviour on the approach to the critical point is analysed.
Resumo:
Superconduttori bulk in MgB2, ottenuti con tecnologia Mg-RLI brevettata da Edison Spa, sono stati oggetto di un'approfondita analisi in termini di forze di levitazione. Questo studio è stato preliminare per la progettazione di un innovativo sistema di levitazione lineare. I risultati ottenuti sperimentalmente sono stati validati attraverso modelli numerici sviluppati ad hoc. I campioni oggetto dello studio sono tre bulk in MgB2 rappresentativi delle tipiche forme usate nelle applicazioni reali: un disco, un cilindro, una piastra. I bulk sono stati misurati con un sistema di misura per le forze di levitazione realizzato a tale scopo. Un protocollo sperimentale è stato seguito per la caratterizzazione di base, sia in condizioni Field Cooling sia Zero Field Cooling, al quale sono state affiancate prove specifiche come la possibilità di mantenere inalterate le proprietà superconduttive attraverso la giunzione di più campioni con la tecnologia Mg-RLI. Un modello numerico è stato sviluppato per convalidare i risultati sperimentali e per studiare l'elettrodinamica della levitazione. Diverse configurazioni di rotori magnetici sono state accoppiate con un cilindro in MgB2 con lo scopo di valutare la soluzione ottimale; questo tema è stato apporofondito attraverso lo sviluppo di un software di simulazione che può tenere conto sia del numero di magneti sia della presenza di anelli in materiale magneti intercalati fra di essi. Studi analoghi sono stati portati avanti su una piastra di MgB2 per simulare il comportamento di una geometria piana. Un sistema di raffreddamento innovativo basato sull'azoto solido è stato studiato per poterlo accoppiare con un sistema di levitazione. Il criostato progettato è costituito da due dewar, uno dentro l'altro; quello interno ha lo scopo di raffreddare l'MgB2 mentre quello esterno di limitare delle perdite verso l'esterno. Il criopattino così ottenuto è accoppiato in condizioni FC ad una rotaia formata da magneti permanenti in NdFeB.
Resumo:
Nanotechnologies are rapidly expanding because of the opportunities that the new materials offer in many areas such as the manufacturing industry, food production, processing and preservation, and in the pharmaceutical and cosmetic industry. Size distribution of the nanoparticles determines their properties and is a fundamental parameter that needs to be monitored from the small-scale synthesis up to the bulk production and quality control of nanotech products on the market. A consequence of the increasing number of applications of nanomaterial is that the EU regulatory authorities are introducing the obligation for companies that make use of nanomaterials to acquire analytical platforms for the assessment of the size parameters of the nanomaterials. In this work, Asymmetrical Flow Field-Flow Fractionation (AF4) and Hollow Fiber F4 (HF5), hyphenated with Multiangle Light Scattering (MALS) are presented as tools for a deep functional characterization of nanoparticles. In particular, it is demonstrated the applicability of AF4-MALS for the characterization of liposomes in a wide series of mediums. Afterwards the technique is used to explore the functional features of a liposomal drug vector in terms of its biological and physical interaction with blood serum components: a comprehensive approach to understand the behavior of lipid vesicles in terms of drug release and fusion/interaction with other biological species is described, together with weaknesses and strength of the method. Afterwards the size characterization, size stability, and conjugation of azidothymidine drug molecules with a new generation of metastable drug vectors, the Metal Organic Frameworks, is discussed. Lastly, it is shown the applicability of HF5-ICP-MS for the rapid screening of samples of relevant nanorisk: rather than a deep and comprehensive characterization it this time shown a quick and smart methodology that within few steps provides qualitative information on the content of metallic nanoparticles in tattoo ink samples.
Resumo:
The aim of Tissue Engineering is to develop biological substitutes that will restore lost morphological and functional features of diseased or damaged portions of organs. Recently computer-aided technology has received considerable attention in the area of tissue engineering and the advance of additive manufacture (AM) techniques has significantly improved control over the pore network architecture of tissue engineering scaffolds. To regenerate tissues more efficiently, an ideal scaffold should have appropriate porosity and pore structure. More sophisticated porous configurations with higher architectures of the pore network and scaffolding structures that mimic the intricate architecture and complexity of native organs and tissues are then required. This study adopts a macro-structural shape design approach to the production of open porous materials (Titanium foams), which utilizes spatial periodicity as a simple way to generate the models. From among various pore architectures which have been studied, this work simulated pore structure by triply-periodic minimal surfaces (TPMS) for the construction of tissue engineering scaffolds. TPMS are shown to be a versatile source of biomorphic scaffold design. A set of tissue scaffolds using the TPMS-based unit cell libraries was designed. TPMS-based Titanium foams were meant to be printed three dimensional with the relative predicted geometry, microstructure and consequently mechanical properties. Trough a finite element analysis (FEA) the mechanical properties of the designed scaffolds were determined in compression and analyzed in terms of their porosity and assemblies of unit cells. The purpose of this work was to investigate the mechanical performance of TPMS models trying to understand the best compromise between mechanical and geometrical requirements of the scaffolds. The intention was to predict the structural modulus in open porous materials via structural design of interconnected three-dimensional lattices, hence optimising geometrical properties. With the aid of FEA results, it is expected that the effective mechanical properties for the TPMS-based scaffold units can be used to design optimized scaffolds for tissue engineering applications. Regardless of the influence of fabrication method, it is desirable to calculate scaffold properties so that the effect of these properties on tissue regeneration may be better understood.
Resumo:
Functional and smart materials have gained large scientific and practical interest in current research and development. The Heusler alloys form an important class of functional materials used in spintronics, thermoelectrics, and for shape memory alloy applications. An important aspect of functional materials is the adaptability of their physical properties. In this work functional polycrystalline bulk and epitaxial thin film Heusler alloys are characterized by means of spectroscopic investigation methods, X-ray magnetic circular dichroism (XMCD) and energy dispersive X-ray analysis (EDX). With EDX the homogeneity of the samples is studied extensively. For some cases of quaternary compounds, for example Co2(MnxTi1−x)Sn and Co2(Mn0.5Dy0.5)Sn, an interesting phase separation in two nearly pure ternary Heusler phases occurs. For these samples the phase separation leads to an improvement of thermoelectric properties. XMCD as the main investigation method was used to study Co2TiZ (Z = Si, Sn, and Sb), Co2(MnxTi1−x)Si, Co2(MnxTi1−x)Ge, Co2Mn(Ga1−xGex), Co2FeAl, Mn2VAl, and Ni2MnGa Heusler compounds. The element-specific magnetic moments are calculated. Also, the spin-resolved unoccupied density of states is determined, for example giving hints for half-metallic ferromagnetism for some Co-based compounds. The systematic change of the magnetic moments and the shift of the Fermi energy is a proof that Heusler alloys are suitable for a controlled tailoring of physical properties. The comparison of the experimental results with theoretical predictions improves the understanding of complex materials needed to optimize functional Heusler alloys.
Resumo:
Minor components are of particular interest due to their antioxidant and biological properties. Various classes of lipophilic minor components (plant sterols (PS) and α-tocopherol) were selected as they are widely used in the food industry. A Fast GC-MS method for PS analysis in functional dairy products was set up. The analytical performance and significant reduction of the analysis time and consumables, demonstrated that Fast GC-MS could be suitable for the PS analysis in functional dairy products. Due to their chemical structure, PS can undergo oxidation, which could be greatly impacted by matrix nature/composition and thermal treatments. The oxidative stability of PS during microwave heating was evaluated. Two different model systems (PS alone and in combination) were heated up to 30 min at 1000 W. PS degraded faster when they were alone than in presence of TAG. The extent of PS degradation depends on both heating time and the surrounding medium, which can impact the quality and safety of the food product destined to microwave heating/cooking. Many minor lipid components are included in emulsion systems and can affect the rate of lipid oxidation. The oxidative stability of oil-in-water (O/W) emulsions containing PS esters, ω-3 FA and phenolic compounds, were evaluated after a 14-day storage at room temperature. Due to their surface active character, PS could be particularly prone to oxidation when they are incorporated in emulsions, as they are more exposed to water-soluble prooxidants. Finally, some minor lipophilic components may increase oxidative stability of food systems due to their antioxidant activity. á-tocopherol partitioning and antioxidant activity was determined in the presence of excess SDS in stripped soybean O/W emulsions. Results showed that surfactant micelles could play a key role as an antioxidant carrier, by potentially increasing the accessibility of hydrophobic antioxidant to the interface.
Resumo:
In questo lavoro di tesi è presentato un metodo per lo studio della compartimentalizzazione dell’acqua in cellule biologiche, mediante lo studio dell’autodiffusione delle molecole d’acqua tramite uno strumento NMR single-sided. Le misure sono state eseguite nel laboratorio NMR all’interno del DIFA di Bologna. Sono stati misurati i coefficienti di autodiffusione di tre campioni in condizione bulk, ottenendo risultati consistenti con la letteratura. È stato poi analizzato un sistema cellulare modello, Saccharomyces cerevisiae, allo stato solido, ottimizzando le procedure per l’ottenimento di mappe di correlazione 2D, aventi come assi il coefficiente di autodiffusione D e il tempo di rilassamento trasversale T2. In questo sistema l’acqua è confinata e l’autodiffusione è ristretta dalle pareti cellulari, si parla quindi di coefficiente di autodiffusione apparente, Dapp. Mediante le mappe sono state individuate due famiglie di nuclei 1H. Il campione è stato poi analizzato in diluizione in acqua distillata, confermando la separazione del segnale in due distinte famiglie. L’utilizzo di un composto chelato, il CuEDTA, ha permesso di affermare che la famiglia con il Dapp maggiore corrisponde all’acqua esterna alle cellule. L’analisi dei dati ottenuti sulle due famiglie al variare del tempo lasciato alle molecole d’acqua per la diffusione hanno portato alla stima del raggio dei due compartimenti: r=2.3±0.2µm per l’acqua extracellulare, r=0.9±0.1µm per quella intracellulare, che è probabilmente acqua scambiata tra gli organelli e il citoplasma. L’incertezza associata a tali stime tiene conto soltanto dell’errore nel calcolo dei parametri liberi del fit dei dati, è pertanto una sottostima, dovuta alle approssimazioni connesse all’utilizzo di equazioni valide per un sistema poroso costituito da pori sferici connessi non permeabili. Gli ordini di grandezza dei raggi calcolati sono invece consistenti con quelli osservabili dalle immagini ottenute con il microscopio ottico.
Resumo:
A novel real-time quantitative PCR assay for detecting the pathogenic and contagious Staphylococcus aureus genotype B (GTB) in bulk tank milk was developed and evaluated. The detection of this pathogen in bulk tank milk would greatly facilitate its control, as it is responsible for great economic loss in Swiss dairy herds. The assay is based on the simultaneous detection of 3 GTB-typical target sequences, including 2 enterotoxin genes and a polymorphism within the leucotoxin E gene. A variety of mastitis-associated bacteria was used to validate the assays, resulting in an analytical specificity of 100% and high repeatability. The analytical sensitivity in milk was 40 cfu/mL. An exponential association between simulated cow prevalence and quantitative PCR result was observed. An initial field study revealed 1 GTB-positive herd among the 33 studied herds. This novel assay for bulk tank milk analysis is suitable for routine purposes and is expected to be an effective tool for minimizing Staph. aureus GTB in Swiss dairy herds.
Resumo:
Mitochondrial F(1)F(o)-ATP synthase is a molecular motor that couples the energy generated by oxidative metabolism to the synthesis of ATP. Direct visualization of the rotary action of the bacterial ATP synthase has been well characterized. However, direct observation of rotation of the mitochondrial enzyme has not been reported yet. Here, we describe two methods to reconstitute mitochondrial F(1)F(o)-ATP synthase into lipid bilayers suitable for structure analysis by electron and atomic force microscopy (AFM). Proteoliposomes densely packed with bovine heart mitochondria F(1)F(o)-ATP synthase were obtained upon detergent removal from ternary mixtures (lipid, detergent and protein). Two-dimensional crystals of recombinant hexahistidine-tagged yeast F(1)F(o)-ATP synthase were grown using the supported monolayer technique. Because the hexahistidine-tag is located at the F(1) catalytic subcomplex, ATP synthases were oriented unidirectionally in such two-dimensional crystals, exposing F(1) to the lipid monolayer and the F(o) membrane region to the bulk solution. This configuration opens a new avenue for the determination of the c-ring stoichiometry of unknown hexahistidine-tagged ATP synthases and the organization of the membrane intrinsic subunits within F(o) by electron microscopy and AFM.