938 resultados para Breast tumor
Resumo:
BACKGROUND: Aromatase inhibitors are considered standard adjuvant endocrine treatment of postmenopausal women with hormone receptor-positive breast cancer, but it remains uncertain whether aromatase inhibitors should be given upfront or sequentially with tamoxifen. Awaiting results from ongoing randomized trials, we examined prognostic factors of an early relapse among patients in the BIG 1-98 trial to aid in treatment choices. PATIENTS AND METHODS: Analyses included all 7707 eligible patients treated on BIG 1-98. The median follow-up was 2 years, and the primary end point was breast cancer relapse. Cox proportional hazards regression was used to identify prognostic factors. RESULTS: Two hundred and eighty-five patients (3.7%) had an early relapse (3.1% on letrozole, 4.4% on tamoxifen). Predictive factors for early relapse were node positivity (P < 0.001), absence of both receptors being positive (P < 0.001), high tumor grade (P < 0.001), HER-2 overexpression/amplification (P < 0.001), large tumor size (P = 0.001), treatment with tamoxifen (P = 0.002), and vascular invasion (P = 0.02). There were no significant interactions between treatment and the covariates, though letrozole appeared to provide a greater than average reduction in the risk of early relapse in patients with many involved lymph nodes, large tumors, and vascular invasion present. CONCLUSION: Upfront letrozole resulted in significantly fewer early relapses than tamoxifen, even after adjusting for significant prognostic factors.
Resumo:
Sphingosine kinases (SK) catalyze the formation of sphingosine-1-phosphate (S1P) which plays a crucial role in cell growth and survival. Here, we show that prolactin (PRL) biphasically activates the SK-1, but not the SK-2 subtype, in the breast adenocarcinoma cell-line MCF7. A first peak occurs after minutes of stimulation and is followed by a second delayed activation after hours of stimulation. A similar biphasic effect on SK-1 activity is seen for 17beta-estradiol (E(2)). The delayed activation of SK-1 derives from an upregulated mRNA and protein expression and is due to increased SK-1 promoter activity and mechanistically involves STAT5 activation as well as protein kinase C and the classical mitogen-activated protein kinases. Furthermore, glucocorticoids also block both hormone-induced SK-1 expression and activity. Functionally, long-term stimulation of MCF7 cells with PRL or E(2) is well known to trigger increased cell proliferation and migration. Both hormone-induced cell responses critically involve SK-1 activation since the depletion of SK-1, but not SK-2, by siRNA transfection abolishes the hormone-induced cell proliferation and migration. In summary, our data show that PRL and E(2) cause a pronounced delayed SK-1 activation which is due to increased gene transcription, and critically determines the capability of cells to grow and move. Thus, the SK-1 may represent a novel attractive target for anti-tumor therapy.
Resumo:
Integrins are a family of transmembrane adhesion receptors that might transduce signals from the extracellular matrix into the inside of cells after ligand binding. In order to investigate whether beta3 integrins expressed in tumor cells might mediate such outside-in signaling, human MDA-MB-231 breast cancer cells that were stably transfected with either beta3 integrin or mock-transfected were investigated in a matrigel degradation assay and a grafting experiment was performed on the developing chicken chorioallantoic membrane (CAM). After cultivation on matrigel for time periods between one and five days, more matrigel was digested in the wells in which beta3 integrin expressing cells were incubated than in wells of mock-transfected cells. Furthermore, extracts of beta3 integrin expressing cells contained higher levels of MMP-2 protein as determined by immunoblotting and more MMP-2 associated gelatinase activity as detected by zymography than extracts of mock-transfected cells. Matrigel degradation and gelatinase activity as well as MMP-2 expression were elevated when beta3 integrin expressing cells were incubated in the presence of the RGD peptide (mimicking an integrin ligand). After grafting on 10 day-old embryonic chicken CAM for three to five days, beta3 integrin expressing cells assembled in spheroids showed higher rates of spreading on the CAM surface and CAM invasion as well as a significant MMP-2 up-regulation compared to mock-transfected cells. The results from the in vivo and in vitro experiments allow the conclusion that the presence of beta3 integrin in MDA-MB-231 breast cancer cells induced an increased MMP-2 expression and activity that might contribute to the enhanced invasive potential observed.
Resumo:
BACKGROUND: The utility of chemotherapy for women who experience a locoregional recurrence after primary treatment of early breast cancer remains an open question. An international collaborative trial is being conducted by the Breast International Group (BIG), the International Breast Cancer Study Group (IBCSG), and the National Surgical Adjuvant Breast and Bowel Project (NSABP) to determine the effectiveness of cytotoxic therapy for these patients, either alone or in addition to selective use of hormonal therapy and trastuzumab. METHODS: The trial population includes women who have had a previous diagnosis of invasive breast cancer treated by mastectomy or breast-conserving surgery, but subsequently develop an isolated local and/or regional ipsilateral invasive recurrence. Excision of all macroscopic tumor without evidence of systemic disease is required for study entry. Patients are randomized to receive chemotherapy or no chemotherapy; type of chemotherapy is not protocol-specified. Radiation, hormonal therapy, and trastuzumab are given as appropriate. The primary endpoint is disease-free survival (DFS). Quality-of-life measurements are collected at baseline, and then at 9 and 12 months. The accrual goal is 977 patients. RESULTS: This report describes the characteristics of the first 99 patients. Sites of recurrence at study entry were: breast (56%), mastectomy scar/chest wall (35%), and regional lymph nodes (9%). Two-thirds of patients have estrogen-receptor-positive recurrences. CONCLUSION: This is the only trial actively investigating the question of "adjuvant" chemotherapy in locally recurrent breast cancer. The case mix of accrual to date indicates a broad representation of this patient population.
Resumo:
In this phase III, multinational, randomized trial, the International Breast Cancer Study Group, Breast International Group, and the National Surgical Adjuvant Breast and Bowel Project will attempt to define the effectiveness of cytotoxic therapy for patients with locoregional recurrence of breast cancer. We will evaluate whether chemotherapy prolongs disease-free survival and, secondarily, whether its use improves overall survival and systemic disease-free survival. Quality of life measurements will be monitored during the first 12 months of the study. Women who have had a previous diagnosis of invasive breast cancer treated by mastectomy or breast-conserving surgery and who have undergone complete surgical excision of all macroscopic disease but who subsequently develop isolated local and/or regional ipsilateral invasive recurrence are eligible. Patients are randomized to observation/no adjuvant chemotherapy or to adjuvant chemotherapy; all suitable patients receive radiation, hormonal, and trastuzumab therapy. Radiation therapy is recommended for patients who have not received previous adjuvant radiation therapy but is required for those with microscopically positive margins. The radiation field must encompass the tumor bed plus a surrounding margin to a dose of >or= 40 Gy. Radiation therapy will be administered before, during, or after chemotherapy. All women with estrogen receptor-positive and/or progesterone receptor-positive recurrence must receive hormonal therapy, with the agent and duration to be determined by the patient's investigator. Adjuvant trastuzumab therapy is permitted for those with HER2- positive tumors, provided that intent to treat is declared before randomization. Although multidrug regimens are preferred, the agents, doses, and use of supportive therapy are at the discretion of the investigator.
Resumo:
BACKGROUND: Diagnosis and prognosis in breast cancer are mainly based on histology and immunohistochemistry of formalin-fixed, paraffin-embedded (FFPE) material. Recently, gene expression analysis was shown to elucidate the biological variance between tumors and molecular markers were identified that led to new classification systems that provided better prognostic and predictive parameters. Archived FFPE samples represent an ideal source of tissue for translational research, as millions of tissue blocks exist from routine diagnostics and from clinical studies. These should be exploited to provide clinicians with more accurate prognostic and predictive information. Unfortunately, RNA derived from FFPE material is partially degraded and chemically modified and reliable gene expression measurement has only become successful after implementing novel and optimized procedures for RNA isolation, demodification and detection. METHODS: In this study we used tissue cylinders as known from the construction of tissue microarrays. RNA was isolated with a robust protocol recently developed for RNA derived from FFPE material. Gene expression was measured by quantitative reverse transcription PCR. RESULTS: Sixteen tissue blocks from 7 patients diagnosed with multiple histological subtypes of breast cancer were available for this study. After verification of appropriate localization, sufficient RNA yield and quality, 30 tissue cores were available for gene expression measurement on TaqMan(R) Low Density Arrays (16 invasive ductal carcinoma (IDC), 8 ductal carcinoma in situ (DCIS) and 6 normal tissue), and 14 tissue cores were lost. Gene expression values were used to calculate scores representing the proliferation status (PRO), the estrogen receptor status and the HER2 status. The PRO scores measured from entire sections were similar to PRO scores determined from IDC tissue cores. Scores determined from normal tissue cores consistently revealed lower PRO scores than cores derived from IDC or DCIS of the same block or from different blocks of the same patient. CONCLUSION: We have developed optimized protocols for RNA isolation from histologically distinct areas. RNA prepared from FFPE tissue cores is suitable for gene expression measurement by quantitative PCR. Distinct molecular scores could be determined from different cores of the same tumor specimen.
Resumo:
TRPV6 is an endothelial calcium entry channel that is strongly expressed in breast adenocarcinoma tissue. In this study, we further confirmed this observation by analysis of breast cancer tissues, which indicated that TRPV6 mRNA expression was up-regulated between 2-fold and 15-fold compared with the average in normal breast tissue. Whereas TRPV6 is expressed in the cancer tissue, its role as a calcium channel in breast carcinogenesis is poorly understood. Therefore, we investigated how TRPV6 affects the viability, apoptosis, and calcium transport in the breast cancer cell line T47D. Hormones can also affect the tumor development; hence, we determined the effects of estradiol, progesterone, and 1,25-vitamin D on TRPV6 transcription. Interestingly, the estrogen receptor antagonist tamoxifen reduced expression of TRPV6 and is able to inhibit its calcium transport activity (IC(50), 7.5 micromol/L). The in vitro model showed that TRPV6 can be regulated by estrogen, progesterone, tamoxifen, and 1,25-vitamin D and has a large influence on breast cancer cell proliferation. Moreover, the effect of tamoxifen on cell viability was enhanced when TRPV6 expression was silenced with small interfering RNA. TRPV6 may be a novel target for the development of calcium channel inhibitors to treat breast adenocarcinoma expressing TRPV6.
Resumo:
Although chemotherapy for breast cancer can increase inflammation, few studies have examined predictors of this phenomenon. This study examined potential contributions of demographics, disease characteristics, and treatment regimens to markers of inflammation in response to chemotherapy for breast cancer. Thirty-five women with stage I-III-A breast cancer (mean age 50 years) were studied prior to cycle 1 and prior to cycle 4 of anthracycline-based chemotherapy. Circulating levels of inflammatory markers with high relevance to breast cancer were examined, including C-reactive protein (CRP), tumor necrosis factor-alpha (TNF-alpha), Interleukin-1 receptor antagonist (IL1-RA), vascular endothelial growth factor (VEGF), soluble intercellular adhesion molecule-1 (sICAM-1), Interleukin- (IL-6), soluble P-selectin (sP-selectin), and von Willebrand factor (vWf). Chemotherapy was associated with elevations in VEGF (p < or = 0.01), sICAM-1 (p < or = 0.01), sP-selectin (p < or = 0.02) and vWf (p < or = 0.05). Multiple regression analysis controlling for age and body mass index (BMI) showed that higher post-chemotherapy levels of inflammation were consistently related to higher pre-chemotherapy levels of inflammation (ps < or =0.05) as well as to certain disease characteristics. Post-chemotherapy IL-6 levels were higher in patients who had larger tumors (p < or = 0.05) while post-chemotherapy VEGF levels were higher in patients who had smaller tumors (p < or = 0.05). Post-chemotherapy sP-selectin levels were highest in women who had received epirubicin, cytoxan, 5-fluorouracil chemotherapy (p < or = 0.01). These findings indicate that chemotherapy treatment can be associated with elevations in certain markers of inflammation, particularly markers of endothelial and platelet activation. Inflammation in response to chemotherapy is most significantly related to inflammation that existed prior to chemotherapy but also potentially to treatment regimen and to certain disease characteristics.
Resumo:
Specific delivery to tumors and efficient cellular uptake of nucleic acids remain major challenges for gene-targeted cancer therapies. Here we report the use of a designed ankyrin repeat protein (DARPin) specific for the epithelial cell adhesion molecule (EpCAM) as a carrier for small interfering RNA (siRNA) complementary to the bcl-2 mRNA. For charge complexation of the siRNA, the DARPin was fused to a truncated human protamine-1 sequence. To increase the cell binding affinity and the amount of siRNA delivered into cells, DARPin dimers were generated and used as fusion proteins with protamine. All proteins expressed well in Escherichia coli in soluble form, yet, to remove tightly bound bacterial nucleic acids, they were purified under denaturing conditions by immobilized metal ion affinity chromatography, followed by refolding. The fusion proteins were capable of complexing four to five siRNA molecules per protamine, and fully retained the binding specificity for EpCAM as shown on MCF-7 breast carcinoma cells. In contrast to unspecific LipofectAMINE transfection, down-regulation of antiapoptotic bcl-2 using fusion protein complexed siRNA was strictly dependent on EpCAM binding and internalization. Inhibition of bcl-2 expression facilitated tumor cell apoptosis as shown by increased sensitivity to the anticancer agent doxorubicin.
Resumo:
Background Tissue microarray (TMA) technology revolutionized the investigation of potential biomarkers from paraffin-embedded tissues. However, conventional TMA construction is laborious, time-consuming and imprecise. Next-generation tissue microarrays (ngTMA) combine histological expertise with digital pathology and automated tissue microarraying. The aim of this study was to test the feasibility of ngTMA for the investigation of biomarkers within the tumor microenvironment (tumor center and invasion front) of six tumor types, using CD3, CD8 and CD45RO as an example. Methods Ten cases each of malignant melanoma, lung, breast, gastric, prostate and colorectal cancers were reviewed. The most representative H&E slide was scanned and uploaded onto a digital slide management platform. Slides were viewed and seven TMA annotations of 1 mm in diameter were placed directly onto the digital slide. Different colors were used to identify the exact regions in normal tissue (n = 1), tumor center (n = 2), tumor front (n = 2), and tumor microenvironment at invasion front (n = 2) for subsequent punching. Donor blocks were loaded into an automated tissue microarrayer. Images of the donor block were superimposed with annotated digital slides. Exact annotated regions were punched out of each donor block and transferred into a TMA block. 420 tissue cores created two ngTMA blocks. H&E staining and immunohistochemistry for CD3, CD8 and CD45RO were performed. Results All 60 slides were scanned automatically (total time < 10 hours), uploaded and viewed. Annotation time was 1 hour. The 60 donor blocks were loaded into the tissue microarrayer, simultaneously. Alignment of donor block images and digital slides was possible in less than 2 minutes/case. Automated punching of tissue cores and transfer took 12 seconds/core. Total ngTMA construction time was 1.4 hours. Stains for H&E and CD3, CD8 and CD45RO highlighted the precision with which ngTMA could capture regions of tumor-stroma interaction of each cancer and the T-lymphocytic immune reaction within the tumor microenvironment. Conclusion Based on a manual selection criteria, ngTMA is able to precisely capture histological zones or cell types of interest in a precise and accurate way, aiding the pathological study of the tumor microenvironment. This approach would be advantageous for visualizing proteins, DNA, mRNA and microRNAs in specific cell types using in situ hybridization techniques.
Resumo:
Several authors have demonstrated an increased number of mitotic figures in breast cancer resection specimen when compared with biopsy material. This has been ascribed to a sampling artifact where biopsies are (i) either too small to allow formal mitotic figure counting or (ii) not necessarily taken form the proliferating tumor periphery. Herein, we propose a different explanation for this phenomenon. Biopsy and resection material of 52 invasive ductal carcinomas was studied. We counted mitotic figures in 10 representative high power fields and quantified MIB-1 immunohistochemistry by visual estimation, counting and image analysis. We found that mitotic figures were elevated by more than three-fold on average in resection specimen over biopsy material from the same tumors (20±6 vs 6±2 mitoses per 10 high power fields, P=0.008), and that this resulted in a relative diminution of post-metaphase figures (anaphase/telophase), which made up 7% of all mitotic figures in biopsies but only 3% in resection specimen (P<0.005). At the same time, the percentages of MIB-1 immunostained tumor cells among total tumor cells were comparable in biopsy and resection material, irrespective of the mode of MIB-1 quantification. Finally, we found no association between the size of the biopsy material and the relative increase of mitotic figures in resection specimen. We propose that the increase in mitotic figures in resection specimen and the significant shift towards metaphase figures is not due to a sampling artifact, but reflects ongoing cell cycle activity in the resected tumor tissue due to fixation delay. The dwindling energy supply will eventually arrest tumor cells in metaphase, where they are readily identified by the diagnostic pathologist. Taken together, we suggest that the rapidly fixed biopsy material better represents true tumor biology and should be privileged as predictive marker of putative response to cytotoxic chemotherapy.
Resumo:
Hereditary breast and ovarian cancer (HBOC) is caused by a mutation in the BRCA1 or BRCA2 genes. Women with a BRCA1/2 mutation are at increased risks for breast and ovarian cancer and often develop cancer at an earlier age than the general population. However, some women with a BRCA1/2 mutation do not develop breast or ovarian cancer under the age of 50 years. There have been no specific studies on BRCA positive women with no cancer prior to age 50, therefore this study sought to investigate factors within these women with no cancer under age 50 with respect to reproductive risk factors, BMI, tumor pathology, screening history, risk-reducing surgeries, and family history. 241 women were diagnosed with cancer prior to age 50, 92 with cancer at age 50 or older, and 20 women were over age 50 with no cancer. Data were stratified based on BRCA1 and BRCA2 mutation status. Within the cohorts we investigated differences between women who developed cancer prior to age 50 and those who developed cancer at age 50 or older. We also investigated the differences between women who developed cancer at age 50 or older and those who were age 50 or older with no cancer. Of the 92 women with a BRCA1/2 mutation who developed cancer at age 50 or older, 46 developed ovarian cancer first, 45 developed breast cancer, and one had breast and ovarian cancer diagnosed synchronously. BRCA2 carriers diagnosed age 50 or older were more likely to have ER/PR negative breast tumors when compared to BRCA2 carriers who were diagnosed before age 50. This is consistent with one other study that has been performed. Ashkenazi Jewish women with a BRCA1 mutation were more likely to be diagnosed age 50 or older than other ethnicities. Hispanic women with a BRCA2 mutation were more likely to be diagnosed prior to age 50 when compared to other ethnicities. No differences in reproductive factors or BMI were observed. Further characterization of BRCA positive women with no cancer prior to age 50 may aid in finding factors important in the development of breast or ovarian cancer.
Resumo:
The tumor microenvironment is comprised of a vast array of heterogeneous cells including both normal and neoplastic cells. The tumor stroma recruitment process has been exploited for an effective gene delivery technique using bone marrow derived MSC. Targeted migration of the MSC toward the tumor microenvironment, while successful, is not yet fully understood. This study was designed to assess the role of CD44 in the migration of MSC toward the tumor microenvironment and to determine the implications of CD44-deficient MSC within the tumor stroma. Inhibition of MSC migration was evaluated through a variety of methods in vitro and in vivo including CD44 receptor knockdown, CD44 antagonists, CD44 neutralizing antibodies and small molecule inhibitor of matrix metalloproteinases. Blocking CD44 signaling through MMP inhibition was characterized by lack of intracellular domain cleavage and lead to the decrease in Twist gene expression. A functional relationship between CD44 and Twist expression was confirmed by chromatin immunoprecipitation. Next, a series of murine tumor models were used to examine the role of CD44 deficient stroma within the tumor microenvironment. Labeled transgenic CD44 knockout (KO) MSC or wild type (WT) C57/B6 MSC were used to analyze the stromal incorporation within murine breast carcinomas (EO771 and 4T1). Subsequent tumors were analyzed for vessel formation (CD31), and the presence of tumor associated fibroblast (TAF) markers, α-smooth muscle actin (α-SMA), fibroblast activation protein (FAP), and fibroblast specific protein (FSP). The tumors with CD44KO MSC cells had less vessel formation than the tumors with WT MSC. The lack of fibroblastic TAF population as defined by FAP/FSP expression by the CD44KO MSC admixed tumors suggest that the bone marrow derived population of MSC were unable to contribute to the fibroblastic stromal population. Subsequently, a bone marrow transplantation experiment confirmed the endogenous migratory deficiencies of the CD44KO bone marrow derived stromal cells toward the tumor microenvironment in vivo. WT mice with CD44KO bone marrow had less CD44KOderived tumor stroma compared to mice with WT bone marrow. These results indicate that CD44 is crucial to stromal cell migration and incorporation to the tumor microenvironment as TAF.
Resumo:
EphA2, also known as ECK (epithelial cell kinase), is a transmembrane receptor tyrosine kinase that is commonly over-expressed in cancers such as those of the prostate, colon, lung, and breast. For breast cancers, EphA2 overexpression is most prominent in the ER-negative subtype, and is associated with a higher rate of lung metastasis. Studies conducted to demonstrate the role of EphA2 in a non-cancerous environment have shown that it is very important in developmental processes, but not in normal adult tissues. These results make EphA2 a prospective therapeutic target since new therapies are needed for the more aggressive ER-negative breast cancers. A panel of breast cancer cell lines was screened for expression of EphA2 by immunoblotting. Several of the overexpressing cell lines, including BT549, MDA-MB-231, and HCC 1954 were selected for experiments utilizing siRNA for transient knockdown and shRNA for stable knockdown. Targeted knockdown of EphA2 was measured using RT-PCR and immunoblotting techniques. Here, the functions of EphA2 in the process of metastasis have been elucidated using in vitro assays that indicate cancer cell metastatic potential and in vivo studies that reveal the effect of EphA2 on mammary fat pad tumor growth, vessel formation, and the effect of using EphA2-targeting siRNA on pre-established mammary fat pad tumors. A decrease in EphA2 expression both in vitro and in vivo correlated with reduced migration and experimental metastasis of breast cancer cells. Current work is being done to investigate the mechanism behind EphA2’s participation in some of these processes. These studies are important because they have contributed to understanding the role that EphA2 plays in the progression of breast cancers to a metastatic state.
Resumo:
INTRODUCTION: Once metastasis has occurred, the possibility of completely curing breast cancer is unlikely, particularly for the 30 to 40% of cancers overexpressing the gene for HER2/neu. A vaccine targeting p185, the protein product of the HER2/neu gene, could have therapeutic application by controlling the growth and metastasis of highly aggressive HER2/neu+ cells. The purpose of this study was to determine the effectiveness of two gene vaccines targeting HER2/neu in preventive and therapeutic tumor models. METHODS: The mouse breast cancer cell line A2L2, which expresses the gene for rat HER2/neu and hence p185, was injected into the mammary fat pad of mice as a model of solid tumor growth or was injected intravenously as a model of lung metastasis. SINCP-neu, a plasmid containing Sindbis virus genes and the gene for rat HER2/neu, and Adeno-neu, an E1,E2a-deleted adenovirus also containing the gene for rat HER2/neu, were tested as preventive and therapeutic vaccines. RESULTS: Vaccination with SINCP-neu or Adeno-neu before tumor challenge with A2L2 cells significantly inhibited the growth of the cells injected into the mammary fat or intravenously. Vaccination 2 days after tumor challenge with either vaccine was ineffective in both tumor models. However, therapeutic vaccination in a prime-boost protocol with SINCP-neu followed by Adeno-neu significantly prolonged the overall survival rate of mice injected intravenously with the tumor cells. Naive mice vaccinated using the same prime-boost protocol demonstrated a strong serum immunoglobulin G response and p185-specific cellular immunity, as shown by the results of ELISPOT (enzyme-linked immunospot) analysis for IFNgamma. CONCLUSION: We report herein that vaccination of mice with a plasmid gene vaccine and an adenovirus gene vaccine, each containing the gene for HER2/neu, prevented growth of a HER2/neu-expressing breast cancer cell line injected into the mammary fat pad or intravenously. Sequential administration of the vaccines in a prime-boost protocol was therapeutically effective when tumor cells were injected intravenously before the vaccination. The vaccines induced high levels of both cellular and humoral immunity as determined by in vitro assessment. These findings indicate that clinical evaluation of these vaccines, particularly when used sequentially in a prime-boost protocol, is justified.